论文标题
CFT $ _2 $的S-转化为封闭式扇区线性空间的线性映射
S-transformations for CFT$_2$ as linear mappings from closed to open sector linear spaces
论文作者
论文摘要
我们首次尝试将CFT $ _2 $的S变形定义为封闭式扇区线性空间的线性映射。该定义基于开放式扇形线性空间同构和边界条件完整性。对角线RCFT可以直接地应用于我们的定义,而预计将适用更多类别的CFT $ _2 $。一个非常规的开放式缝制缝制,而不是由莱威尔(Lewellen)引入的开放部门缝制中,自然上升并概括了该定义。我们的几何方法部分受字符串字段理论的启发,揭示了CFT $ _2 $中的代数信息与表面上的曲率之间的关系。
We make the first attempt to define S-transformations for CFT$_2$ as linear mappings from closed to open sector linear spaces. The definition is based on closed-open sector linear space isomorphisms and boundary condition completeness. Diagonal RCFTs can be applied to our definition straight-forwardly, while more classes of CFT$_2$ are expected to be applicable. An unconventional open sector sewing, not among open sector sewing introduced by Lewellen, rises naturally and generalizes the definition. Our geometrical approach, partially inspired by string field theory, reveals the relationship between algebraic information in CFT$_2$ and curvature on surfaces.