论文标题
无线网络中分布式电源分配的图形神经网络:直播聚合
Graph Neural Networks for Distributed Power Allocation in Wireless Networks: Aggregation Over-the-Air
论文作者
论文摘要
分布式功率分配对于具有致密收发器对的干扰有限的无线网络很重要。在本文中,我们旨在通过使用图形神经网络(GNN)设计低信号开销分布式分配方案,这些方案可扩展到无线链接的数量。我们首先应用了GNN统一框架的消息传递神经网络(MPNN)来解决问题。我们表明,随着网络尺寸的增加,信号开发的增长倍增。受到空中计算(AIRCOMP)的启发,我们然后提出了一个空气MPNN框架,其中来自相邻节点的消息由飞行员的传输能力表示,并且可以通过评估总干扰能力来有效地汇总。随着网络尺寸的增加,空气MPNN的信号传导开销线性增长,我们证明空气MPNN是置换不变的。为了进一步减少信号开销,我们提出了通过复发性神经网络(AIR-MPRNN)的空气消息,其中每个节点在上一个帧中使用图形嵌入和局部状态来更新当前帧中的图形嵌入。由于现有的通信系统在每个框架期间都会发送飞行员,因此可以通过调整飞行员功率将空中跨度纳入现有标准。仿真结果验证了所提出的框架的可扩展性,并表明它们在各种系统参数的总和率方面优于现有功率分配算法。
Distributed power allocation is important for interference-limited wireless networks with dense transceiver pairs. In this paper, we aim to design low signaling overhead distributed power allocation schemes by using graph neural networks (GNNs), which are scalable to the number of wireless links. We first apply the message passing neural network (MPNN), a unified framework of GNN, to solve the problem. We show that the signaling overhead grows quadratically as the network size increases. Inspired from the over-the-air computation (AirComp), we then propose an Air-MPNN framework, where the messages from neighboring nodes are represented by the transmit power of pilots and can be aggregated efficiently by evaluating the total interference power. The signaling overhead of Air-MPNN grows linearly as the network size increases, and we prove that Air-MPNN is permutation invariant. To further reduce the signaling overhead, we propose the Air message passing recurrent neural network (Air-MPRNN), where each node utilizes the graph embedding and local state in the previous frame to update the graph embedding in the current frame. Since existing communication systems send a pilot during each frame, Air-MPRNN can be integrated into the existing standards by adjusting pilot power. Simulation results validate the scalability of the proposed frameworks, and show that they outperform the existing power allocation algorithms in terms of sum-rate for various system parameters.