论文标题

Y装饰的2D孔绘画的Ab-Initio研究用于氢存储应用

An Ab-initio study of the Y decorated 2D holey graphyne for hydrogen storage application

论文作者

Singh, Mukesh, Shukla, Alok, Charkraborty, Brahmananda

论文摘要

扩大自然储层(天然气,石油和煤炭)的污染和快速消费导致人类探索诸如氢燃料之类的替代能源燃料。固态氢存储是最可取的,因为它在板载车辆中的有用性。在这项工作中,我们探索了Yttrium装饰的超多孔,二维孔 - 毛毛,用于氢气。使用第一个原理DFT模拟,我们预测Yttrium掺杂的孔素绘素可以在每个Yttrium Atom上吸附多达七个氢分子,从而导致重量氢的重量百分比为9.34,高于美国能源部(DOE)设定的6.5 wt%的目标。每H $ _2 $的平均结合能和解吸温度分别为-0.34 eV和〜438 K。 Yttrium Atom由于从Y 4D轨道到C 2P轨道的电荷转移而在HGY纸上牢固地粘合,而H $ _2 $分子对Y的吸附是由于kubas-type相互作用涉及kubas-type相互作用,该相互作用涉及涉及H 1S Orbital y 1s Orbital y y 3D轨道捐赠的收费捐赠,并获得了Y 3D轨道捐赠,并获得了净收取的收益,并获得了H Y 1S Orbital。此外,已经发现了足够的金属原子扩散能屏障,可以防止HGY板上过渡金属(YTTRIUM)的聚类。使用AB-Initio分子动力学(AIMD)方法分析系统在较高温度下的稳定性,并发现该系统在房间和最高解吸温度下稳定。系统在较高温度下的稳定性,存在足够的扩散能屏障,以防止金属金属聚类,高的h $ _2 $摄取的高重量wt%具有合适的结合能,而解吸温度则表明y掺杂的HGY是制造高容量氢存储设备的有希望的材料。

Expanding pollution and rapid consumption of natural reservoirs (gas, oil, and coal) led humankind to explore alternative energy fuels like hydrogen fuel. Solid-state hydrogen storage is most desirable because of its usefulness in the onboard vehicle. In this work, we explored the yttrium decorated ultra porous, two-dimensional holey-graphyne for hydrogen storage. Using the first principles DFT simulations, we predict that yttrium doped holey graphyne can adsorb up to seven hydrogen molecules per yttrium atom resulting in a gravimetric hydrogen weight percentage of 9.34, higher than the target of 6.5 wt% set by the US Department of Energy (DoE). The average binding energy per H$_2$ and desorption temperature come out to be -0.34 eV and ~ 438 K, respectively. Yttrium atom is bonded strongly on HGY sheet due to charge transfer from Y 4d orbital to C 2p orbital whereas the adsorption of H$_2$ molecule on Y is due to Kubas-type interactions involving charge donation from H 1s orbital to Y 3d orbital and back donation with net charge gain by H 1s orbital. Furthermore, sufficient energy barriers for metal atom diffusion have been found to prevent the clustering of transition metal (yttrium) on the HGY sheet. The stability of the system at higher temperatures is analyzed using Ab-initio molecular dynamics (AIMD) method and the system is found to be stable at room and the highest desorption temperature. Stability of the system at higher temperatures, presence of adequate diffusion energy barrier to prevent metal-metal clustering, high gravimetric wt% of H$_2$ uptake with suitable binding energy, and desorption temperature signifies that Y-doped HGY is a promising material to fabricate high capacity hydrogen storage devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源