论文标题

Helson Zeta功能有限多个值的字符功能

Helson zeta functions for characters with finitely many values

论文作者

Bochkov, I.

论文摘要

我们表明,Helson Zeta功能的分析延续$ζ_χ(s)= \ sum_1^{\ infty}χ(n)n^{ - s} $在本质上可以在$ 21/40 <\ re s <1 $的$ 21/40 <\ re Reim $ 1/2 <\ reie $ 1/2/2/2 << $χ$以团结的立方根为基础。如果这些集合相对于真实轴对称,则可以使用$ \ $的$ \ pm 1 $来实现相同的情况。

We show that the analytic continuations of Helson zeta functions $ ζ_χ(s)= \sum_1^{\infty}χ(n)n^{-s} $ can have essentially arbitrary poles and zeroes in the strip $ 21/40 < \Re s < 1 $ (unconditionally), and in the whole critical strip $ 1/2 < \Re s <1 $ under Riemann Hypothesis for the function $ χ$ taking values in cubic roots of unity. If the sets are symmetric with respect to the real axis, the same can be achieved with $ χ$ taking values $ \pm 1 $.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源