论文标题
隐藏自由在静态空间上的模式扩展中
Hidden freedom in the mode expansion on static spacetimes
论文作者
论文摘要
我们回顾了集中在一个真正的标量场上的基础状态的构建,该量子场的动态是由克莱因·戈登方程在大量静态上统治的。就像在对经典运动方程的分析中一样,当存在足够的异构体时,通过模式扩展,两点相关函数的构造归结为解决二阶二阶,在实线间隔上的普通微分方程。使用Sturm-Liouville理论的语言,最引人注目的是当将一个间隔的一个端点归类为限制圈时,这种情况通常是当一个人从事具有时间类似边界的全球双曲线空位时发生的情况。在这种情况下,除了初始数据之外,还需要指定边界条件既具有定义明确的经典动态,又要选择相应的基态。在这里,我们通过使用Sturm-Liouville理论的众所周知的结果来考虑Robin类型的边界条件,但我们通过探索从极限圈端点的次级解决方案的固有任意性出现的无引起的自由来超越了现有文献。因此,我们表明,无限的许多单参数的明智动态家族是可以接受的。换句话说,我们强调的是,保证建造成熟基态的物理约束通常不会明确地修复这样的状态。此外,我们提供了$(1 + 1)$-Half Minkowski Spacetime的示例,以在可以获得分析公式的特定情况下阐明基本原理。
We review the construction of ground states focusing on a real scalar field whose dynamics is ruled by the Klein-Gordon equation on a large class of static spacetimes. As in the analysis of the classical equations of motion, when enough isometries are present, via a mode expansion the construction of two-point correlation functions boils down to solving a second order, ordinary differential equation on an interval of the real line. Using the language of Sturm-Liouville theory, most compelling is the scenario when one endpoint of such interval is classified as a limit circle, as it often happens when one is working on globally hyperbolic spacetimes with a timelike boundary. In this case, beyond initial data, one needs to specify a boundary condition both to have a well-defined classical dynamics and to select a corresponding ground state. Here, we take into account boundary conditions of Robin type by using well-known results from Sturm-Liouville theory, but we go beyond the existing literature by exploring an unnoticed freedom that emerges from the intrinsic arbitrariness of secondary solutions at a limit circle endpoint. Accordingly, we show that infinitely many one-parameter families of sensible dynamics are admissible. In other words, we emphasize that physical constraints guaranteeing the construction of full-fledged ground states do not, in general, fix one such state unambiguously. In addition, we provide, in full detail, an example on $(1 + 1)$-half Minkowski spacetime to spell out the rationale in a specific scenario where analytic formulae can be obtained.