论文标题
语义新颖性通过关系推理检测
Semantic Novelty Detection via Relational Reasoning
论文作者
论文摘要
语义新颖性检测旨在发现测试数据中未知类别。此任务在安全至关重要的应用中尤其重要,例如自动驾驶或医疗保健,在部署时间识别未知对象并相应地向用户发出警告至关重要。尽管深度学习研究取得了令人印象深刻的进步,但现有模型仍然需要在已知类别上进行填充阶段才能识别未知类别。当隐私规则限制数据访问或严格的内存和计算约束时(例如边缘计算)时,这可能会令人望而却步。我们声称,量身定制的表示策略可能是有效有效的语义新颖性检测的正确解决方案。除了对此任务的最新方法测试最新的方法外,我们还提出了一种基于关系推理的新表示学习范式。它着重于学习如何衡量语义相似性而不是识别已知类别。我们的实验表明,这些知识可直接传输到各种场景,并且可以用作插件模块,以将封闭设置的识别模型转换为可靠的开放式开放集。
Semantic novelty detection aims at discovering unknown categories in the test data. This task is particularly relevant in safety-critical applications, such as autonomous driving or healthcare, where it is crucial to recognize unknown objects at deployment time and issue a warning to the user accordingly. Despite the impressive advancements of deep learning research, existing models still need a finetuning stage on the known categories in order to recognize the unknown ones. This could be prohibitive when privacy rules limit data access, or in case of strict memory and computational constraints (e.g. edge computing). We claim that a tailored representation learning strategy may be the right solution for effective and efficient semantic novelty detection. Besides extensively testing state-of-the-art approaches for this task, we propose a novel representation learning paradigm based on relational reasoning. It focuses on learning how to measure semantic similarity rather than recognizing known categories. Our experiments show that this knowledge is directly transferable to a wide range of scenarios, and it can be exploited as a plug-and-play module to convert closed-set recognition models into reliable open-set ones.