论文标题
卡洛龙和成分单孔
Calorons and constituent monopoles
论文作者
论文摘要
我们在$ \ mathbb {r}^{3} \ times s^{1} $上研究反自我的Yang-mills Instantons,也称为Calorons,其行为在圆因因子的崩溃中。在此限制下,我们将卡洛龙的分解明确,从本质上是$ 1 $单极的组成部分。我们根据成分给出了卡洛龙的粘合结构,并使用它来计算模量空间的尺寸。该结构均匀地为结构组工作一个任意紧凑的半简单谎言组。
We study anti-self-dual Yang-Mills instantons on $\mathbb{R}^{3}\times S^{1}$, also known as calorons, and their behaviour under collapse of the circle factor. In this limit, we make explicit the decomposition of calorons in terms of constituent pieces which are essentially charge $1$ monopoles. We give a gluing construction of calorons in terms of the constituents and use it to compute the dimension of the moduli space. The construction works uniformly for structure group an arbitrary compact semi-simple Lie group.