论文标题
基准测试量子逻辑操作相对于阈值的容错
Benchmarking quantum logic operations relative to thresholds for fault tolerance
论文作者
论文摘要
基准测试嘈杂量子处理器的当代方法通常测量平均错误率或过程不忠。但是,以最差的误差率(通过钻石规范定义)给出了易耐故障量子误差校正的阈值,这可能与平均错误率不同。解决此差异的一种方法是使用随机编译(RC)等技术随机化量子门的物理实现。在这项工作中,我们使用栅极集层析成像来执行一组两分逻辑门的精确表征,以在超导量子处理器上研究RC。我们发现,在RC下,栅极误差是由随机的Pauli噪声模型准确描述的,而没有相关误差,并且在空间相关的相干误差和非马克维亚误差得到了强烈抑制。我们进一步表明,随机编译的门的平均值和最差案例错误率相当于我们的门集的最大最坏情况误差为0.0197(3)。我们的结果表明,随机基准是验证量子处理器的错误率低于故障容忍阈值的可行途径,并且仅当 - 并且仅当 - 并且仅当 - 并且仅当 - 距离门是通过随机化方法来实现的,却是通过量身定制噪声实现的近期算法的失败率。
Contemporary methods for benchmarking noisy quantum processors typically measure average error rates or process infidelities. However, thresholds for fault-tolerant quantum error correction are given in terms of worst-case error rates -- defined via the diamond norm -- which can differ from average error rates by orders of magnitude. One method for resolving this discrepancy is to randomize the physical implementation of quantum gates, using techniques like randomized compiling (RC). In this work, we use gate set tomography to perform precision characterization of a set of two-qubit logic gates to study RC on a superconducting quantum processor. We find that, under RC, gate errors are accurately described by a stochastic Pauli noise model without coherent errors, and that spatially-correlated coherent errors and non-Markovian errors are strongly suppressed. We further show that the average and worst-case error rates are equal for randomly compiled gates, and measure a maximum worst-case error of 0.0197(3) for our gate set. Our results show that randomized benchmarks are a viable route to both verifying that a quantum processor's error rates are below a fault-tolerance threshold, and to bounding the failure rates of near-term algorithms, if -- and only if -- gates are implemented via randomization methods which tailor noise.