论文标题
SELOC-ML:用于工业物联网中机器学习应用的语义低代码工程
SeLoC-ML: Semantic Low-Code Engineering for Machine Learning Applications in Industrial IoT
论文作者
论文摘要
物联网(IoT)通过弥合信息技术(IT)和运营技术(OT)之间的差距来改变行业。机器正在与连接的传感器集成在一起,并通过智能分析应用程序管理,加速了数字化转型和业务运营。将机器学习(ML)带到工业设备是一个进步,旨在促进IT和OT的融合。但是,在工业物联网(IIOT)中开发ML应用程序提出了各种挑战,包括硬件异质性,ML模型的非标准化表示,设备和ML模型兼容性问题以及应用程序开发缓慢。在这一领域的成功部署需要深入了解硬件,算法,软件工具和应用程序。因此,本文介绍了一个用于ML应用程序(SELOC-ML)的名为“语义低代码工程”的框架,该框架建立在低代码平台上,以利用语义Web技术来支持IIOT的ML应用程序的快速开发。 SELOC-ML使非专家可以轻松地模拟,发现,重复使用和匹配ML模型和设备。可以根据匹配结果自动生成项目代码在硬件上部署。开发人员可以从称为食谱的语义应用模板中受益,从而快速原型最终用户应用程序。与工业ML分类案例研究中的传统方法相比,评估证实了至少三倍的工程努力,显示了SELOC-ML的效率和实用性。我们分享代码并欢迎任何贡献。
Internet of Things (IoT) is transforming the industry by bridging the gap between Information Technology (IT) and Operational Technology (OT). Machines are being integrated with connected sensors and managed by intelligent analytics applications, accelerating digital transformation and business operations. Bringing Machine Learning (ML) to industrial devices is an advancement aiming to promote the convergence of IT and OT. However, developing an ML application in industrial IoT (IIoT) presents various challenges, including hardware heterogeneity, non-standardized representations of ML models, device and ML model compatibility issues, and slow application development. Successful deployment in this area requires a deep understanding of hardware, algorithms, software tools, and applications. Therefore, this paper presents a framework called Semantic Low-Code Engineering for ML Applications (SeLoC-ML), built on a low-code platform to support the rapid development of ML applications in IIoT by leveraging Semantic Web technologies. SeLoC-ML enables non-experts to easily model, discover, reuse, and matchmake ML models and devices at scale. The project code can be automatically generated for deployment on hardware based on the matching results. Developers can benefit from semantic application templates, called recipes, to fast prototype end-user applications. The evaluations confirm an engineering effort reduction by a factor of at least three compared to traditional approaches on an industrial ML classification case study, showing the efficiency and usefulness of SeLoC-ML. We share the code and welcome any contributions.