论文标题

稳定的旋转常规黑洞

Stable Rotating Regular Black Holes

论文作者

Franzin, Edgardo, Liberati, Stefano, Mazza, Jacopo, Vellucci, Vania

论文摘要

我们提出了一个旋转的常规黑洞,其内部地平线对于旋转参数的任何值的表面重力为零,因此在大规模膨胀方面稳定。我们的指标是通过结合正规奇异性的两种成功策略来构建的,即通​​过用$ r $的函数代替质量参数并引入保形因子。质量函数控制着内部地平线的属性,其位移远离Kerr几何学的内部地平线是根据参数$ e $量化的;尽管保形因子以通过尺寸数量$ b $参数化的方式使奇异性规范化。所得的线元素不仅避免了具有内部视野的常规黑洞模型常见的稳定性问题,而且还没有Kerr几何形状的有问题的特性,例如存在封闭的时间层曲线。虽然拟议的度量具有奇异旋转黑洞的所有现象学相关特征,例如甲壳机,光环和最内向的稳定圆形轨道 - 显示出与其外观中的Kerr黑洞的显着相似性,但它仍然允许较大的偏差,尤其是对于较大的旋转参数$ a $ a $ a $ a $。从这个意义上讲,所提出的旋转“内数”常规黑洞解决方案不仅可以进一步进行理论研究,而且大多数可以代表可行的几何形状,以与将来的现象学测试中的Kerr相反。

We present a rotating regular black hole whose inner horizon has zero surface gravity for any value of the spin parameter, and is therefore stable against mass inflation. Our metric is built by combining two successful strategies for regularizing singularities, i.e. by replacing the mass parameter with a function of $r$ and by introducing a conformal factor. The mass function controls the properties of the inner horizon, whose displacement away from the Kerr geometry's inner horizon is quantified in terms of a parameter $e$; while the conformal factor regularizes the singularity in a way that is parametrized by the dimensionful quantity $b$. The resulting line element not only avoids the stability issues that are common to regular black hole models endowed with inner horizons, but is also free of problematic properties of the Kerr geometry, such as the existence of closed timelike curves. While the proposed metric has all the phenomenological relevant features of singular rotating black holes -- such as ergospheres, light ring and innermost stable circular orbit -- showing a remarkable similarity to a Kerr black hole in its exterior, it allows nonetheless sizable deviations, especially for large values of the spin parameter $a$. In this sense, the proposed rotating "inner-degenarate" regular black hole solution is not only amenable to further theoretical investigations but most of all can represent a viable geometry to contrast to the Kerr one in future phenomenological tests.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源