论文标题

Seshadri分层和舒伯特品种:标准单元理论的几何结构

Seshadri stratifications and Schubert varieties: a geometric construction of a standard monomial theory

论文作者

Chirivì, Rocco, Fang, Xin, Littelmann, Peter

论文摘要

构建了舒伯特品种的标准单元理论(1)舒伯特品种的舒伯特subvarieties和(2)组合ls-path特性公式的schubert品种的几何形状。通过使用局部秩序的任意线性化并削弱平衡分层的定义,可以改善Seshadri分层的一般理论。

A standard monomial theory for Schubert varieties is constructed exploiting (1) the geometry of the Seshadri stratifications of Schubert varieties by their Schubert subvarieties and (2) the combinatorial LS-path character formula for Demazure modules. The general theory of Seshadri stratifications is improved by using arbitrary linearization of the partial order and by weakening the definition of balanced stratification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源