论文标题

即时投票中的投票长度

Ballot Length in Instant Runoff Voting

论文作者

Tomlinson, Kiran, Ugander, Johan, Kleinberg, Jon

论文摘要

即时径流投票(IRV)是传统多元化投票的越来越大的替代品,在该投票中,选民在候选人而不是单票方面提交排名。实际上,使用IRV的选举通常会限制选票的长度,选民的选民人数被允许在投票中排名。我们从理论上和经验上分析了给定固定的选民偏好,投票长度如何影响选举的结果。我们表明,有超过$ K $的候选人的偏好配置文件,以至于$ k-1 $不同的候选人以不同的投票长度获胜。我们在此类配置文件所需的选民数量上获得了确切的下限,并为不受限制的选民偏好提供了匹配下限的施工。此外,我们表明哪些获奖者的序列可以超过投票长度,并提供明确的配置文件构造,以实现任何可行的获胜者序列。我们还研究了经典的偏好限制如何影响我们的结果 - 例如,单峰使$ k-1 $不同的获胜者不可能,但仍然允许至少$ω(\ sqrt k)$。最后,我们分析了168个现实世界选举的集合,在那里我们截断了排名以模拟较短的选票。我们发现,较短的选票可能会在这些选举的四分之一内改变结果。我们的结果将投票长度作为IRV选举设计的自由程度。

Instant runoff voting (IRV) is an increasingly-popular alternative to traditional plurality voting in which voters submit rankings over the candidates rather than single votes. In practice, elections using IRV often restrict the ballot length, the number of candidates a voter is allowed to rank on their ballot. We theoretically and empirically analyze how ballot length can influence the outcome of an election, given fixed voter preferences. We show that there exist preference profiles over $k$ candidates such that up to $k-1$ different candidates win at different ballot lengths. We derive exact lower bounds on the number of voters required for such profiles and provide a construction matching the lower bound for unrestricted voter preferences. Additionally, we characterize which sequences of winners are possible over ballot lengths and provide explicit profile constructions achieving any feasible winner sequence. We also examine how classic preference restrictions influence our results--for instance, single-peakedness makes $k-1$ different winners impossible but still allows at least $Ω(\sqrt k)$. Finally, we analyze a collection of 168 real-world elections, where we truncate rankings to simulate shorter ballots. We find that shorter ballots could have changed the outcome in one quarter of these elections. Our results highlight ballot length as a consequential degree of freedom in the design of IRV elections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源