论文标题
超级C-MAP的H/Q-correspesence和概括
The H/Q-correspondence and a generalization of the supergravity c-map
论文作者
论文摘要
鉴于具有旋转矢量场(和其他数据)的超复合歧管,我们构建了一个圆锥形超复合歧管。结果,我们将四个离子歧管与旋转矢量场的相同维度的超复合歧管相关联。这是HK/QK-correspence的概括。作为应用程序,我们表明Quaternionic歧管可以与其一半尺寸的圆锥形特殊复杂歧管相关联。此外,是一种与Quaternionic歧管相关的投影特殊复杂歧管(具有规范的C-Prothustive结构)。后者是超级C-MAP的概括。我们还表明,任何特殊复杂歧管的切线束都带有规范的Ricci-Flat超复合结构,从而概括了刚性C-MAP。
Given a hypercomplex manifold with a rotating vector field (and additional data), we construct a conical hypercomplex manifold. As a consequence, we associate a quaternionic manifold to a hypercomplex manifold of the same dimension with a rotating vector field. This is a generalization of the HK/QK-correspondence. As an application, we show that a quaternionic manifold can be associated to a conical special complex manifold of half its dimension. Furthermore, a projective special complex manifold (with a canonical c-projective structure) associates with a quaternionic manifold. The latter is a generalization of the supergravity c-map. We do also show that the tangent bundle of any special complex manifold carries a canonical Ricci-flat hypercomplex structure, thereby generalizing the rigid c-map.