论文标题

可解释的人类在环境动态数据驱动的数字双胞胎

Explainable Human-in-the-loop Dynamic Data-Driven Digital Twins

论文作者

Zhang, Nan, Bahsoon, Rami, Tziritas, Nikos, Theodoropoulos, Georgios

论文摘要

数字双胞胎(DT)本质上是动态数据驱动的模型,可作为现实世界系统的实时共生“虚拟副本”。 DT可以利用动态数据驱动的应用系统(DDDAS)双向共生感应反馈循环的基本面来进行连续更新。因此,传感循环可以操纵测量,分析和重新配置,旨在在DT中进行更准确的建模和分析。重新配置决策可以是自主的或互动的,可以保持人类在循环中。这些决定的可信赖性可能会因理由的解释性不足而阻碍,并在实施替代方案中给定情况的决定方面获得了效用。此外,不同的决策算法和模型具有不同的复杂性,质量,并可能导致模型获得不同的实用性。解释性的不足可能会限制人类可以评估决策的程度,通常会导致更新不适合给定情况,错误,从而损害了模型的整体准确性。本文的新贡献是一种利用人类在循环DDDA和DT系统中解释性的方法,利用双向共生感应反馈。该方法利用可解释的机器学习和目标建模来解释性,并考虑了所获得的公用事业的权衡分析。我们使用智能仓库中的示例来演示这种方法。

Digital Twins (DT) are essentially dynamic data-driven models that serve as real-time symbiotic "virtual replicas" of real-world systems. DT can leverage fundamentals of Dynamic Data-Driven Applications Systems (DDDAS) bidirectional symbiotic sensing feedback loops for its continuous updates. Sensing loops can consequently steer measurement, analysis and reconfiguration aimed at more accurate modelling and analysis in DT. The reconfiguration decisions can be autonomous or interactive, keeping human-in-the-loop. The trustworthiness of these decisions can be hindered by inadequate explainability of the rationale, and utility gained in implementing the decision for the given situation among alternatives. Additionally, different decision-making algorithms and models have varying complexity, quality and can result in different utility gained for the model. The inadequacy of explainability can limit the extent to which humans can evaluate the decisions, often leading to updates which are unfit for the given situation, erroneous, compromising the overall accuracy of the model. The novel contribution of this paper is an approach to harnessing explainability in human-in-the-loop DDDAS and DT systems, leveraging bidirectional symbiotic sensing feedback. The approach utilises interpretable machine learning and goal modelling to explainability, and considers trade-off analysis of utility gained. We use examples from smart warehousing to demonstrate the approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源