论文标题

FLDETECTOR:通过检测恶意客户捍卫联邦学习免受模型中毒攻击

FLDetector: Defending Federated Learning Against Model Poisoning Attacks via Detecting Malicious Clients

论文作者

Zhang, Zaixi, Cao, Xiaoyu, Jia, Jinyuan, Gong, Neil Zhenqiang

论文摘要

联合学习(FL)容易受到模型中毒攻击的影响,在该攻击中,恶意客户通过向服务器发送操纵模型更新来破坏全局模型。现有的防御措施主要依赖拜占庭式抗体法,即使某些客户是恶意的,旨在学习准确的全球模型。但是,在实践中,他们只能抵抗少数恶意客户。如何与大量恶意客户抗衡模型中毒攻击仍然是一个悬而未决的挑战。我们的fldetector通过检测恶意客户来应对这一挑战。 FLDETECTOR旨在检测和删除大多数恶意客户,以便拜占庭式的fl方法可以使用其余客户学习准确的全球模型。我们的主要观察结果是,在模型中毒攻击中,在多次迭代中的客户更新的模型更新是不一致的。因此,FLDetector通过检查其模型更高的一致性来检测恶意客户端。粗略地说,服务器根据其历史模型更新使用Cauchy平均值定理和L-BFG来预测客户的模型更新,如果从客户端接收到的模型更新并且预测的模型更新在多个迭代中不一致,则将客户端标记为恶意。我们在三个基准数据集上进行的广泛实验表明,FLDETECTOR可以准确检测到多种最新模型中毒攻击中的恶意客户。在删除了检测到的恶意客户端后,现有的拜占庭式佛罗里达FL方法可以学习准确的全局模型。

Federated learning (FL) is vulnerable to model poisoning attacks, in which malicious clients corrupt the global model via sending manipulated model updates to the server. Existing defenses mainly rely on Byzantine-robust FL methods, which aim to learn an accurate global model even if some clients are malicious. However, they can only resist a small number of malicious clients in practice. It is still an open challenge how to defend against model poisoning attacks with a large number of malicious clients. Our FLDetector addresses this challenge via detecting malicious clients. FLDetector aims to detect and remove the majority of the malicious clients such that a Byzantine-robust FL method can learn an accurate global model using the remaining clients. Our key observation is that, in model poisoning attacks, the model updates from a client in multiple iterations are inconsistent. Therefore, FLDetector detects malicious clients via checking their model-updates consistency. Roughly speaking, the server predicts a client's model update in each iteration based on its historical model updates using the Cauchy mean value theorem and L-BFGS, and flags a client as malicious if the received model update from the client and the predicted model update are inconsistent in multiple iterations. Our extensive experiments on three benchmark datasets show that FLDetector can accurately detect malicious clients in multiple state-of-the-art model poisoning attacks. After removing the detected malicious clients, existing Byzantine-robust FL methods can learn accurate global models.Our code is available at https://github.com/zaixizhang/FLDetector.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源