论文标题
混合特征和安德烈的P-Adic时期的代数类
Algebraic classes in mixed characteristic and André's p-adic periods
论文作者
论文摘要
通过对混合特征的代数类的研究,我们定义了$ \ bar {\ mathbb {q}} _ p $的可计数子代数,我们称之为安德烈的$ p $ - adic时期的代数。我们构建了坦纳基人框架来研究这些时期。特别是,我们约束了它们的超越程度,并制定了Grothendieck时期的类似物。我们展示了几个示例,其中特殊的$ p $ adiC功能的特殊值似乎是安德烈(André)的$ p $ - adic时期,我们将这些新猜想与代数类上的某些经典问题联系起来。
Motivated by the study of algebraic classes in mixed characteristic we define a countable subalgebra of $\bar{\mathbb{Q}}_p$ which we call the algebra of André's $p$-adic periods. We construct a tannakian framework to study these periods. In particular, we bound their transcendence degree and formulate the analog of the Grothendieck period conjecture. We exhibit several examples where special values of classical $p$-adic functions appear as André's $p$-adic periods and we relate these new conjectures to some classical problems on algebraic classes.