论文标题

IDET:高质量更改检测的迭代差异增强变压器

IDET: Iterative Difference-Enhanced Transformers for High-Quality Change Detection

论文作者

Guo, Qing, Wang, Ruofei, Huang, Rui, Sun, Shuifa, Zhang, Yuxiang

论文摘要

变更检测(CD)旨在检测在不同时间捕获的图像对中的变化区域,在不同的现实世界应用中发挥重要作用。然而,大多数现有作品都集中在设计高级网络体系结构上,以将特征差异映射到最终更改图,同时忽略特征差异质量的影响。在本文中,我们从不同的角度研究CD,即如何优化特征差异以突出变化和抑制未改变的区域,并提出了一个新的模块,称为迭代差异增强的变压器(IDET)。 IDET包含三个变压器:两个用于提取两个图像的远程信息的变压器和一个用于增强特征差异的变压器。与先前的变压器相反,第三个变压器将前两个变压器的输出引导以迭代效果差异的增强。为了获得更有效的改进,我们进一步提出了基于IDET的多尺度变更检测检测,该更改检测使用图像的多尺度表示来进行多个特征差异的细化,并提出了一种粗到最新的融合策略,以结合所有细化。在不同的应用程序方面,我们的最终CD方法在六个大规模数据集上优于七个最先进的方法,这证明了特征差异增强的重要性和IDET的有效性。

Change detection (CD) aims to detect change regions within an image pair captured at different times, playing a significant role in diverse real-world applications. Nevertheless, most of the existing works focus on designing advanced network architectures to map the feature difference to the final change map while ignoring the influence of the quality of the feature difference. In this paper, we study the CD from a different perspective, i.e., how to optimize the feature difference to highlight changes and suppress unchanged regions, and propose a novel module denoted as iterative difference-enhanced transformers (IDET). IDET contains three transformers: two transformers for extracting the long-range information of the two images and one transformer for enhancing the feature difference. In contrast to the previous transformers, the third transformer takes the outputs of the first two transformers to guide the enhancement of the feature difference iteratively. To achieve more effective refinement, we further propose the multi-scale IDET-based change detection that uses multi-scale representations of the images for multiple feature difference refinements and proposes a coarse-to-fine fusion strategy to combine all refinements. Our final CD method outperforms seven state-of-the-art methods on six large-scale datasets under diverse application scenarios, which demonstrates the importance of feature difference enhancements and the effectiveness of IDET.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源