论文标题

在超过场景中,对具有稀疏控制变化的连接和自动化车辆的自适应测试

Adaptive Testing for Connected and Automated Vehicles with Sparse Control Variates in Overtaking Scenarios

论文作者

Yang, Jingxuan, He, Honglin, Zhang, Yi, Feng, Shuo, Liu, Henry X.

论文摘要

测试和评估是连接和自动化车辆(CAVS)开发和部署的关键步骤。由于黑盒的特性和各种类型的骑士,如何适应和评估骑士仍然是一个重大挑战。已经提出了许多方法来自适应地在测试过程中生成测试方案。但是,大多数现有方法不能应用于复杂的方案,在复杂的情况下,定义此类方案所需的变量是高维度的。为了填补这一空白,本文提出了具有稀疏控制变体方法的自适应测试。我们的方法没有自适应地生成测试方案,而是通过适应性地利用测试结果来评估CAVS的性能。具体而言,使用基于控制变体的多个线性回归技术对每个测试结果进行调整。由于可以针对正在测试的CAV进行自适应优化回归系数,因此与直接使用测试结果相比,使用调整后的结果可以减少估计方差。为了克服高维度挑战,稀疏控制变量仅用于测试场景的关键变量。为了验证所提出的方法,研究了高维超过的场景,结果表明我们的方法可以进一步加速评估过程约30次。

Testing and evaluation is a critical step in the development and deployment of connected and automated vehicles (CAVs). Due to the black-box property and various types of CAVs, how to test and evaluate CAVs adaptively remains a major challenge. Many approaches have been proposed to adaptively generate testing scenarios during the testing process. However, most existing approaches cannot be applied to complex scenarios, where the variables needed to define such scenarios are high dimensional. Towards filling this gap, the adaptive testing with sparse control variates method is proposed in this paper. Instead of adaptively generating testing scenarios, our approach evaluates CAVs' performances by adaptively utilizing the testing results. Specifically, each testing result is adjusted using multiple linear regression techniques based on control variates. As the regression coefficients can be adaptively optimized for the CAV under test, using the adjusted results can reduce the estimation variance, compared with using the testing results directly. To overcome the high dimensionality challenge, sparse control variates are utilized only for the critical variables of testing scenarios. To validate the proposed method, the high-dimensional overtaking scenarios are investigated, and the results demonstrate that our approach can further accelerate the evaluation process by about 30 times.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源