论文标题

涵盖格拉斯曼尼亚法规:界限和建筑

Covering Grassmannian Codes: Bounds and Constructions

论文作者

Qian, Bingchen, Wang, Xin, Xie, Chengfei, Ge, Gennian

论文摘要

Grassmannian $ \ MATHCAL {G} _Q(n,k)$是矢量空间的所有$ k $维二维子空间的集合,最近,Etzion和Zhang在网络编码网络中用于网络编码式网络,最近将新的诺斯求婚用于覆盖Grassmannian代码。 $α$ - $(n,k,δ)_q^c $覆盖Grassmannian代码$ \ MATHCAL {C} $是$ \ Mathcal {g} _q(n,k)的子集$ \ mathbb {f} _q^n。$在本文中,我们在覆盖Grassmannian代码的大小上得出了新的上和下限。这些边界改善并扩展了已知边界的参数范围。

Grassmannian $\mathcal{G}_q(n,k)$ is the set of all $k$-dimensional subspaces of the vector space $\mathbb{F}_q^n.$ Recently, Etzion and Zhang introduced a new notion called covering Grassmannian code which can be used in network coding solutions for generalized combination networks. An $α$-$(n,k,δ)_q^c$ covering Grassmannian code $\mathcal{C}$ is a subset of $\mathcal{G}_q(n,k)$ such that every set of $α$ codewords of $\mathcal{C}$ spans a subspace of dimension at least $δ+k$ in $\mathbb{F}_q^n.$ In this paper, we derive new upper and lower bounds on the size of covering Grassmannian codes. These bounds improve and extend the parameter range of known bounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源