论文标题

推荐系统中的小组验证:多层绩效评估框架

Group Validation in Recommender Systems: Framework for Multi-layer Performance Evaluation

论文作者

Jurdi, Wissam Al, Abdo, Jacques Bou, Demerjian, Jacques, Makhoul, Abdallah

论文摘要

解释试图在雇用推荐人的平台中实现用户行为的模型的性能结果是研究人员和从业人员继续面对的一个巨大挑战。尽管当前的评估工具具有提供系统性能的稳固概述的能力,但在最新研究中,它们仍然缺乏使用的一致性和有效性。当前的传统评估技术往往无法检测到可能在数据的较小子集上发生的变化,并且缺乏解释这种变化如何影响整体性能的能力。在本文中,我们关注推荐人评估的数据聚类的概念,并将邻里评估方法应用于推荐系统应用程序的数据集。这种名为基于邻里的评估的新方法有助于更好地理解系统中更紧凑的子集中的关键性能变化,以帮助发现这种变化通常不会被传统指标引起的弱点,并且通常被平均。这个新的模块化评估层补充了现有的评估机制,并为推荐生态系统(例如模型演化测试,欺诈/攻击检测以及托管混合模型设置的可能性)提供了多种应用的可能性。

Interpreting the performance results of models that attempt to realize user behavior in platforms that employ recommenders is a big challenge that researchers and practitioners continue to face. Although current evaluation tools possess the capacity to provide solid general overview of a system's performance, they still lack consistency and effectiveness in their use as evident in most recent studies on the topic. Current traditional assessment techniques tend to fail to detect variations that could occur on smaller subsets of the data and lack the ability to explain how such variations affect the overall performance. In this article, we focus on the concept of data clustering for evaluation in recommenders and apply a neighborhood assessment method for the datasets of recommender system applications. This new method, named neighborhood-based evaluation, aids in better understanding critical performance variations in more compact subsets of the system to help spot weaknesses where such variations generally go unnoticed with conventional metrics and are typically averaged out. This new modular evaluation layer complements the existing assessment mechanisms and provides the possibility of several applications to the recommender ecosystem such as model evolution tests, fraud/attack detection and a possibility for hosting a hybrid model setup.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源