论文标题

一种针对非结构化网格的特殊相对论流体动力学的物理构成的有限卷WENO方法

A Physical-Constraint-Preserving Finite Volume WENO Method for Special Relativistic Hydrodynamics on Unstructured Meshes

论文作者

Chen, Yaping, Wu, Kailiang

论文摘要

本文提出了一种高度强大的三阶精确体积加权基本上是非振荡(WENO)方法,用于非结构化三角形网格的特殊相对论水动力学。我们严格地证明,所提出的方法是物理构成可呈现的(PCP),即始终保留压力和剩余质量密度的阳性以及对流体速度的跨膜约束。该方法建立在非结构化网格上的高效紧凑的WENO重建基础上,简单的PCP限制器,可证明的Harten-Lax-lax-lax-van leer Flux的PCP属性以及三阶强稳定性提供时间离散化。由于相对论的效应,原始变量(即,静物密度,速度和压力)在保守变量方面是高度非线性隐式函数,从而使我们的方法的设计和分析是非平凡的。为了解决强大的非线性引起的困难,我们为PCP特性的理论证明采用了一种新颖的准线性技术。还引入了三种可证明的可融合构成的迭代算法,以从可允许的保守变量中稳健地恢复原始数量。我们还建议对现有的WENO重建进行稍作修改,以确保非线性权重的缩放不变性,从而适应进化算子的均匀性,从而导致修改后的WENO重建在解决多规模波浪结构方面的优势。提出了广泛的数值示例,以证明该方法的鲁棒性,预期准确性和高分辨率。

This paper presents a highly robust third-order accurate finite volume weighted essentially non-oscillatory (WENO) method for special relativistic hydrodynamics on unstructured triangular meshes. We rigorously prove that the proposed method is physical-constraint-preserving (PCP), namely, always preserves the positivity of the pressure and the rest-mass density as well as the subluminal constraint on the fluid velocity. The method is built on a highly efficient compact WENO reconstruction on unstructured meshes, a simple PCP limiter, the provably PCP property of the Harten--Lax--van Leer flux, and third-order strong-stability-preserving time discretization. Due to the relativistic effects, the primitive variables (namely, the rest-mass density, velocity, and pressure) are highly nonlinear implicit functions in terms of the conservative variables, making the design and analysis of our method nontrivial. To address the difficulties arising from the strong nonlinearity, we adopt a novel quasilinear technique for the theoretical proof of the PCP property. Three provable convergence-guaranteed iterative algorithms are also introduced for the robust recovery of primitive quantities from admissible conservative variables. We also propose a slight modification to an existing WENO reconstruction to ensure the scaling invariance of the nonlinear weights and thus to accommodate the homogeneity of the evolution operator, leading to the advantages of the modified WENO reconstruction in resolving multi-scale wave structures. Extensive numerical examples are presented to demonstrate the robustness, expected accuracy, and high resolution of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源