论文标题

图像合成,具有胸部X射线结节增强和检测的分离属性

Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule Augmentation and Detection

论文作者

Shen, Zhenrong, Ouyang, Xi, Xiao, Bin, Cheng, Jie-Zhi, Wang, Qian, Shen, Dinggang

论文摘要

胸部X射线(CXR)图像中的肺结节检测是肺癌早期筛查的共同点。基于深度学习的计算机辅助诊断(CAD)系统可以支持放射线医生在CXR中进行结节筛选。但是,它需要具有高质量注释的大规模和多样化的医学数据,以训练这种强大而准确的CAD。为了减轻此类数据集的有限可用性,为了增强数据,提出了肺结核合成方法。然而,以前的方法缺乏产生结节的能力,这些结节与检测器所需的大小属性相关。为了解决这个问题,我们在本文中介绍了一种新型的肺结核合成框架,该框架分别分解为三个主要方面,包括形状,大小和纹理。基于GAN的形状生成器首先通过产生各种形状面膜来建模结节形状。然后,以下尺寸调制可以对像素级粒度中产生的结节形状的直径进行定量控制。一条粗到细门的卷积卷积纹理发生器最终合成了以调制形状掩模为条件的视觉上合理的结节纹理。此外,我们建议通过控制数据增强的分离结节属性来合成Nodule CXR图像,以便更好地补偿检测任务中容易错过的结节。我们的实验证明了所提出的肺结核合成框架的图像质量,多样性和可控性的增强。我们还验证了数据增强对大大改善结节检测性能的有效性。

Lung nodule detection in chest X-ray (CXR) images is common to early screening of lung cancers. Deep-learning-based Computer-Assisted Diagnosis (CAD) systems can support radiologists for nodule screening in CXR. However, it requires large-scale and diverse medical data with high-quality annotations to train such robust and accurate CADs. To alleviate the limited availability of such datasets, lung nodule synthesis methods are proposed for the sake of data augmentation. Nevertheless, previous methods lack the ability to generate nodules that are realistic with the size attribute desired by the detector. To address this issue, we introduce a novel lung nodule synthesis framework in this paper, which decomposes nodule attributes into three main aspects including shape, size, and texture, respectively. A GAN-based Shape Generator firstly models nodule shapes by generating diverse shape masks. The following Size Modulation then enables quantitative control on the diameters of the generated nodule shapes in pixel-level granularity. A coarse-to-fine gated convolutional Texture Generator finally synthesizes visually plausible nodule textures conditioned on the modulated shape masks. Moreover, we propose to synthesize nodule CXR images by controlling the disentangled nodule attributes for data augmentation, in order to better compensate for the nodules that are easily missed in the detection task. Our experiments demonstrate the enhanced image quality, diversity, and controllability of the proposed lung nodule synthesis framework. We also validate the effectiveness of our data augmentation on greatly improving nodule detection performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源