论文标题

岩石行星的解剖结构由快速卵石积聚III形成。行星芯,地幔和气氛之间挥发物的分配

Anatomy of rocky planets formed by rapid pebble accretion III. Partitioning of volatiles between planetary core, mantle, and atmosphere

论文作者

Johansen, Anders, Ronnet, Thomas, Schiller, Martin, Deng, Zhengbin, Bizzarro, Martin

论文摘要

含有氢,碳和氮的挥发性分子是行星大气的关键组成部分。在岩石行星形成的卵石增生模型中,这些挥发性物种在主行星形成阶段被积聚。在这项研究中,我们建模了在不断增长的行星中挥发物的分配以及对表面的量表。核心存储了地球的氢和碳预算的90%以上,以实现金属和硅酸盐熔体之间H和C的分区系数的实际值。地球和金星的岩浆海洋已经足够深,可以将富含铁的Fe $^{2+} $氧化给Fe $^{3+} $。这种增加的氧化状态会导致从地球岩浆海洋中耗尽主要的co $ $ _2 $和h $ _2 $ o。相比之下,火星披风的氧化状态仍然很低,主要超出氢载体为h $ _2 $。由于XUV波长的年轻太阳的辐射,这种氢很容易逃脱气氛,拖延了CO,CO $ _2 $,H $ _2 $ O和N $ _2 $的大气中的大部分。与拟议的古老海岸线一致,在火星上维持少量的地表水,以中等低的地幔氧化值。由于岩浆中的溶解度极低,氮分配相对均匀地均匀。因此,不可能在核心中埋葬大量的氮储存库。地球的整体低N内容与所有软骨类别中N的高丰度不同意,并有利于卵石雪的挥发性。我们通过卵石积聚的快速岩石行星形成的模型表现出与太阳陆地行星挥发物含量的广泛一致性。因此,可以将陆地行星的多样性用作基准案例,以校准岩石外岩石行星及其大气的模型。

Volatile molecules containing hydrogen, carbon, and nitrogen are key components of planetary atmospheres. In the pebble accretion model for rocky planet formation, these volatile species are accreted during the main planetary formation phase. For this study, we modelled the partitioning of volatiles within a growing planet and the outgassing to the surface. The core stores more than 90\% of the hydrogen and carbon budgets of Earth for realistic values of the partition coefficients of H and C between metal and silicate melts. The magma oceans of Earth and Venus are sufficiently deep to undergo oxidation of ferrous Fe$^{2+}$ to ferric Fe$^{3+}$. This increased oxidation state leads to the outgassing of primarily CO$_2$ and H$_2$O from the magma ocean of Earth. In contrast, the oxidation state of Mars' mantle remains low and the main outgassed hydrogen carrier is H$_2$. This hydrogen easily escapes the atmosphere due to the irradiation from the young Sun in XUV wavelengths, dragging with it the majority of the CO, CO$_2$, H$_2$O, and N$_2$ contents of the atmosphere. A small amount of surface water is maintained on Mars, in agreement with proposed ancient ocean shorelines, for moderately low values of the mantle oxidation. Nitrogen partitions relatively evenly between the core and the atmosphere due to its extremely low solubility in magma; the burial of large reservoirs of nitrogen in the core is thus not possible. The overall low N contents of Earth disagree with the high abundance of N in all chondrite classes and favours a volatile delivery by pebble snow. Our model of rapid rocky planet formation by pebble accretion displays broad consistency with the volatile contents of the Sun's terrestrial planets. The diversity of the terrestrial planets can therefore be used as benchmark cases to calibrate models of extrasolar rocky planets and their atmospheres.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源