论文标题
何时通过枢轴语言有用TTS增加?
When Is TTS Augmentation Through a Pivot Language Useful?
论文作者
论文摘要
由于少量转录的音频数据,为低资源语言开发自动语音识别(ASR)是一个挑战。对于许多此类语言,音频和文本可单独使用,但没有带有转录的音频。使用文本可以通过文本到语音(TTS)系统综合地产生语音。但是,许多低资源语言也没有质量的TTS系统。我们提出了一种替代方案:通过通过训练有素的TTS系统从目标语言运行文本来制作综合音频,用于高资源枢轴语言。我们研究了该技术在低资源环境中最有效的何时以及如何有效。在我们的实验中,使用数千种合成TTS文本语音对并复制真实数据来平衡可产生最佳结果。我们的发现表明,搜索一组候选枢轴语言可能会导致边际改进,令人惊讶的是,ASR性能可能会因测量的TTS质量的提高而受到伤害。这些发现的应用将ASR分别提高了64.5 \%和45.0 \%的字符误差率(CERR),分别对两种低资源语言:瓜拉尼和SUBA。
Developing Automatic Speech Recognition (ASR) for low-resource languages is a challenge due to the small amount of transcribed audio data. For many such languages, audio and text are available separately, but not audio with transcriptions. Using text, speech can be synthetically produced via text-to-speech (TTS) systems. However, many low-resource languages do not have quality TTS systems either. We propose an alternative: produce synthetic audio by running text from the target language through a trained TTS system for a higher-resource pivot language. We investigate when and how this technique is most effective in low-resource settings. In our experiments, using several thousand synthetic TTS text-speech pairs and duplicating authentic data to balance yields optimal results. Our findings suggest that searching over a set of candidate pivot languages can lead to marginal improvements and that, surprisingly, ASR performance can by harmed by increases in measured TTS quality. Application of these findings improves ASR by 64.5\% and 45.0\% character error reduction rate (CERR) respectively for two low-resource languages: Guaraní and Suba.