论文标题

基于量子中继器的密钥分布的深度加固学习

Deep reinforcement learning for key distribution based on quantum repeaters

论文作者

Reiß, Simon Daniel, van Loock, Peter

论文摘要

这项工作研究了基于量子中继器的密钥分布的秘密关键速率,在通信距离的宽参数空间和量子记忆的相干时间。作为这项任务的第一步,开发了通过量子中继器建模纠缠量子状态的分布的马尔可夫决策过程。基于此模型,实施了一个模拟,该模拟用于确定秘密密钥速率在天真控制的,有限的内存存储时间下,用于广泛的参数。多段量子中继器链中量子状态演变的复杂性激发了使用深度强化学习来寻找用于内存存储时间限制的最佳解决方案 - 所谓的内存截止。这项工作的新颖贡献是探索非常通用的截止策略,这些策略会动态适应量子中继器的状态。提出了这种方法的实施,特别关注四段量子中继器,通过找到胜过较低策略的示例性解决方案来实现其有效性的概念证明。

This work examines secret key rates of key distribution based on quantum repeaters in a broad parameter space of the communication distance and coherence time of the quantum memories. As the first step in this task, a Markov decision process modeling the distribution of entangled quantum states via quantum repeaters is developed. Based on this model, a simulation is implemented, which is employed to determine secret key rates under naively controlled, limited memory storage times for a wide range of parameters. The complexity of the quantum state evolution in a multiple-segment quantum repeater chain motivates the use of deep reinforcement learning to search for optimal solutions for the memory storage time limits - the so-called memory cut-offs. The novel contribution in this work is to explore very general cut-off strategies which dynamically adapt to the state of the quantum repeater. An implementation of this approach is presented, with a particular focus on four-segment quantum repeaters, achieving proof of concept of its validity by finding exemplary solutions that outperform the naive strategies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源