论文标题

DecOplenet:用于域自适应语义分段的解耦网络

DecoupleNet: Decoupled Network for Domain Adaptive Semantic Segmentation

论文作者

Lai, Xin, Tian, Zhuotao, Xu, Xiaogang, Chen, Yingcong, Liu, Shu, Zhao, Hengshuang, Wang, Liwei, Jia, Jiaya

论文摘要

已经提出了语义细分中无监督的域的适应性,以减轻对昂贵像素的依赖的依赖。它利用标有标记的源域数据集以及未标记的目标域图像来学习分割网络。在本文中,我们观察到现有域不变学习框架的两个主要问题。 (1)由于特征分布对齐而分心,网络不能专注于分割任务。 (2)拟合源域数据很好地损害了目标域性能。为了解决这些问题,我们提出了减轻源域过度拟合的脱钩,并使最终模型能够更多地专注于细分任务。此外,我们提出自我歧视(SD),并引入辅助分类器,以使用伪标签学习更多歧视性目标域特征。最后,我们提出在线增强自我训练(OEST),以在线方式上下文提高伪标签的质量。实验表明,我们的方法的表现优于现有的最新方法,并且广泛的消融研究验证了每个组件的有效性。代码可在https://github.com/dvlab-research/decouplenet上找到。

Unsupervised domain adaptation in semantic segmentation has been raised to alleviate the reliance on expensive pixel-wise annotations. It leverages a labeled source domain dataset as well as unlabeled target domain images to learn a segmentation network. In this paper, we observe two main issues of the existing domain-invariant learning framework. (1) Being distracted by the feature distribution alignment, the network cannot focus on the segmentation task. (2) Fitting source domain data well would compromise the target domain performance. To address these issues, we propose DecoupleNet that alleviates source domain overfitting and enables the final model to focus more on the segmentation task. Furthermore, we put forward Self-Discrimination (SD) and introduce an auxiliary classifier to learn more discriminative target domain features with pseudo labels. Finally, we propose Online Enhanced Self-Training (OEST) to contextually enhance the quality of pseudo labels in an online manner. Experiments show our method outperforms existing state-of-the-art methods, and extensive ablation studies verify the effectiveness of each component. Code is available at https://github.com/dvlab-research/DecoupleNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源