论文标题
无序旋转系统中的通量噪声
Flux noise in disordered spin systems
论文作者
论文摘要
已知杂质旋转在超导电线的表面和界面上随机分布,会在超导量子干扰装置中引起通量噪声,从而为超导Qubits提供了解相关的机制。虽然磁通噪声在实验上是良好的表征,但旋转动力学基础的微观模型仍然未知。第一原理理论在计算上太昂贵,无法捕获大长度尺度上的自旋扩散,第三个原理将肿块旋转动力学接近单个现象学自旋扩散操作员,该操作员无法描述量子噪声状态并连接到显微镜模型和无序场景。在这里,我们提出了一种中间的“第二个原理”方法,以描述量子状态中的一般自旋耗散和通量噪声。它导致了这样的解释,即通量噪声是源于电线边缘的Paramagnon激发的密度,带有paramagnon-paramagnon相互作用,导致旋转扩散,以及Paramagnons和其他自由度之间的相互作用,从而导致旋转能量弛豫。在高频下,我们获得了通量噪声的上限,表明在实验中观察到的(超级)欧姆噪声并非源于相互作用的自旋杂质。我们将该方法应用于二维方晶格中的海森贝格模型,并随机分布空位,最接近的neighbour旋转与恒定交换结合。通量噪声的数值计算表明,它遵循观察到的功率定律$ a/ω^α$,并取决于温度和不均匀性,并带有振幅$ a $和指数$α$。将这些结果与Niobium和铝设备中的实验进行了比较。该方法建立了通量噪声实验与微观汉密尔顿人之间的联系,以鉴定相关的显微镜机制和指导降低通量噪声的指导策略。
Impurity spins randomly distributed at the surfaces and interfaces of superconducting wires are known to cause flux noise in Superconducting Quantum Interference Devices, providing a mechanism for decoherence in superconducting qubits. While flux noise is well characterised experimentally, the microscopic model underlying spin dynamics remains unknown. First-principles theories are too computationally expensive to capture spin diffusion over large length scales, third-principles approaches lump spin dynamics into a single phenomenological spin-diffusion operator that is not able to describe the quantum noise regime and connect to microscopic models and disorder scenarios. Here we propose an intermediate "second principles" method to describe general spin dissipation and flux noise in the quantum regime. It leads to the interpretation that flux noise arises from the density of paramagnon excitations at the edge of the wire, with paramagnon-paramagnon interactions leading to spin diffusion, and interactions between paramagnons and other degrees of freedom leading to spin energy relaxation. At high frequency we obtain an upper bound for flux noise, showing that the (super)Ohmic noise observed in experiments does not originate from interacting spin impurities. We apply the method to Heisenberg models in two dimensional square lattices with random distribution of vacancies and nearest-neighbour spins coupled by constant exchange. Numerical calculations of flux noise show that it follows the observed power law $A/ω^α$, with amplitude $A$ and exponent $α$ depending on temperature and inhomogeneities. These results are compared to experiments in niobium and aluminium devices. The method establishes a connection between flux noise experiments and microscopic Hamiltonians identifying relevant microscopic mechanisms and guiding strategies for reducing flux noise.