论文标题
庞然大物:紧凑多个星际系统的外部体系结构过渡的证据
Edge-of-the-Multis: Evidence for a Transition in the Outer Architectures of Compact Multi-Planet Systems
论文作者
论文摘要
尽管紧凑的多个星光系统的体系结构已经充分表征,但对其“外边缘”或最外面行星的位置几乎没有检查。在这里,我们提供的证据表明,观察到的高型开普勒系统在较小的轨道周期截断了,而仅几何和检测偏见可以解释。为了证明这一点,我们考虑了超出观察到的过境行星的假设行星的存在,其特性由内部系统半径的“豌豆”模式和周期比均匀性。我们使用(1)一种新的方法来评估这些假设行星的可检测性,用于估算基于交通和弦长度比的多传输系统的相互倾斜度分散以及(2)的传输概率和检测效率模型,该模型涉及行星多样性对完整性的影响。在假设“豌豆中的豌豆”模式继续比观察到的更大的轨道分离,我们发现$ \ gtrsim35 \%$ $ $ $ $ $ \%紧凑型多层应具有构成已知行星以外的其他检测到的行星,构成了$ \sim7σ$差异,因此缺乏此类检测。这些结果表明,紧凑多样的外部($ \ sim100-300 $天)的区域是截断(即“杂物”)或以系统较小的半径率的形式的“豌豆中的豌豆”模式的截断(即“边缘”)。我们概述了可以区分这些可能性的未来观察结果,并讨论了对行星形成理论的影响。
Although the architectures of compact multiple-planet systems are well-characterized, there has been little examination of their "outer edges", or the locations of their outermost planets. Here we present evidence that the observed high-multiplicity Kepler systems truncate at smaller orbital periods than can be explained by geometric and detection biases alone. To show this, we considered the existence of hypothetical planets orbiting beyond the observed transiting planets with properties dictated by the "peas-in-a-pod" patterns of intra-system radius and period ratio uniformity. We evaluated the detectability of these hypothetical planets using (1) a novel approach for estimating the mutual inclination dispersion of multi-transiting systems based on transit chord length ratios and (2) a model of transit probability and detection efficiency that accounts for the impacts of planet multiplicity on completeness. Under the assumption that the "peas-in-a-pod" patterns continue to larger orbital separations than observed, we find that $\gtrsim35\%$ of Kepler compact multis should possess additional detected planets beyond the known planets, constituting a $\sim7σ$ discrepancy with the lack of such detections. These results indicate that the outer ($\sim100-300$ days) regions of compact multis experience a truncation (i.e. an "edge-of-the-multis") or a significant breakdown of the "peas-in-a-pod" patterns, in the form of systematically smaller radii or larger period ratios. We outline future observations that can distinguish these possibilities, and we discuss implications for planet formation theories.