论文标题
构建用于散射幅度的紧凑型Ansätze
Constructing Compact Ansätze for Scattering Amplitudes
论文作者
论文摘要
在这些程序中,我们讨论了参考文献的最新方法。 [1]用于构建紧凑型Ansätze用于散射幅度。该方法从数值测试的行为接近奇异表面的数值测试中对理性函数的分析结构产生了强大的约束。我们讨论了如何系统地理解这些表面以及如何使用代数几何形状的技术将理性函数的奇异行为纳入ANSATZ。为了执行数值抽样,我们使用$ P $ ADIC数字,这是一个数字理论领域,可以被视为有限领域的表弟。 $ p $ -Adic数字承认了一个非平凡的绝对值以及分析功能,例如$ p $ -ADIC对数。我们提供了应用于NMHV树振幅的方法的详细示例,并讨论将其在HADRON COLLIDERS的三环振幅中应用于两循环的前颜色振幅时的功效。
In these proceedings, we discuss the recent approach of Ref. [1] for the construction of compact Ansätze for scattering amplitudes. The method builds powerful constraints on the analytic structure of the rational functions in amplitudes from numerical tests of their behavior close to singularity surfaces. We discuss how we systematically understand these surfaces and how the singular behavior of the rational function can be incorporated into an Ansatz using techniques from algebraic geometry. To perform the numerical sampling, we make use of $p$-adic numbers, a number-theoretical field that can be considered a cousin of finite fields. The $p$-adic numbers admit a non-trivial absolute value, as well as analytic functions such as the $p$-adic logarithm. We provide a detailed example of the approach applied to an NMHV tree amplitude and discuss the efficacy when applied to the two-loop leading-color amplitude for three-photon production at hadron colliders.