论文标题

结构因果3D重建

Structural Causal 3D Reconstruction

论文作者

Liu, Weiyang, Liu, Zhen, Paull, Liam, Weller, Adrian, Schölkopf, Bernhard

论文摘要

本文考虑了从野外单视图像中无监督的3D对象重建的问题。由于歧义性和内在的不良性,此问题本质上难以解决,因此需要强大的正则化以实现不同潜在因素的分离。与现有的作品将明确的正规化引入客观功能不同,我们研究了一个不同的空间进行隐式正规化 - 潜在空间的结构。具体而言,我们限制了潜在空间的结构,以捕获潜在因素的拓扑因果有序(即表示因果关系依赖性为有向的无环图)。我们首先表明,不同的因果有序对于3D重建至关重要,然后探索几种方法以找到与任务有关的因果因素排序。我们的实验表明,潜在空间结构确实是一种隐式正则化,并引入了有益于重建的电感偏见。

This paper considers the problem of unsupervised 3D object reconstruction from in-the-wild single-view images. Due to ambiguity and intrinsic ill-posedness, this problem is inherently difficult to solve and therefore requires strong regularization to achieve disentanglement of different latent factors. Unlike existing works that introduce explicit regularizations into objective functions, we look into a different space for implicit regularization -- the structure of latent space. Specifically, we restrict the structure of latent space to capture a topological causal ordering of latent factors (i.e., representing causal dependency as a directed acyclic graph). We first show that different causal orderings matter for 3D reconstruction, and then explore several approaches to find a task-dependent causal factor ordering. Our experiments demonstrate that the latent space structure indeed serves as an implicit regularization and introduces an inductive bias beneficial for reconstruction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源