论文标题
$ f_k $ -free图中的最大三角形数量
The maximum number of triangles in $F_k$-free graphs
论文作者
论文摘要
广义的Turán数字$ ex(n,k_s,h)$是$ n $ vertices上$ h $ free Graph中完整图$ k_s $的最大数量。让$ f_k $是由$ k $三角形组成的友谊图。 Erdős和Sós(1976)确定了$ ex(n,k_3,f_2)$的值。 Alon and Shikhelman(2016)证明了本文中的$(n,k_3,f_k)\ le(9k-15)(9K-15)(k+1)n。$n。$,通过使用Chung和Frankl在HyperGraph理论中开发的方法,我们确定$ ex(n,k_3,f_3,f_3,f_3,f_3,f_3,f_3,f_3,f_3,f_3,f_3,f_k)$ f_ $ n $ f_ $ ge 4时,
The generalized Turán number $ex(n,K_s,H)$ is the maximum number of complete graph $K_s$ in an $H$-free graph on $n$ vertices. Let $F_k$ be the friendship graph consisting of $k$ triangles. Erdős and Sós (1976) determined the value of $ex(n,K_3,F_2)$. Alon and Shikhelman (2016) proved that $ex(n,K_3, F_k)\le (9k-15)(k+1)n.$ In this paper, by using a method developed by Chung and Frankl in hypergraph theory, we determine the exact value of $ex(n,K_3,F_k)$ and the extremal graph for any $F_k$ when $n\ge 4k^3$.