论文标题
将3D感知可控的nerf-gan感知到stylegan,以进行可编辑的肖像图像综合
Injecting 3D Perception of Controllable NeRF-GAN into StyleGAN for Editable Portrait Image Synthesis
论文作者
论文摘要
多年来,2d Gans在影像肖像的一代中取得了巨大的成功。但是,他们在生成过程中缺乏3D理解,因此他们遭受了多视图不一致问题的困扰。为了减轻这个问题,已经提出了许多3D感知的甘斯,并显示出显着的结果,但是3D GAN在编辑语义属性方面很难。 3D GAN的可控性和解释性并未得到太多探索。在这项工作中,我们提出了两种解决方案,以克服2D GAN和3D感知gan的这些弱点。我们首先引入了一种新颖的3D感知gan,Surf-gan,它能够在训练过程中发现语义属性,并以无监督的方式控制它们。之后,我们将先前的Surf-GAN注入stylegan,以获得高保真3D可控制的发电机。与允许隐姿姿势控制的现有基于潜在的方法不同,所提出的3D可控制样式gan可实现明确的姿势控制对肖像生成的控制。这种蒸馏允许3D控制与许多基于样式的技术(例如,反转和风格化)之间的直接兼容性,并且在计算资源方面也带来了优势。我们的代码可从https://github.com/jgkwak95/surf-gan获得。
Over the years, 2D GANs have achieved great successes in photorealistic portrait generation. However, they lack 3D understanding in the generation process, thus they suffer from multi-view inconsistency problem. To alleviate the issue, many 3D-aware GANs have been proposed and shown notable results, but 3D GANs struggle with editing semantic attributes. The controllability and interpretability of 3D GANs have not been much explored. In this work, we propose two solutions to overcome these weaknesses of 2D GANs and 3D-aware GANs. We first introduce a novel 3D-aware GAN, SURF-GAN, which is capable of discovering semantic attributes during training and controlling them in an unsupervised manner. After that, we inject the prior of SURF-GAN into StyleGAN to obtain a high-fidelity 3D-controllable generator. Unlike existing latent-based methods allowing implicit pose control, the proposed 3D-controllable StyleGAN enables explicit pose control over portrait generation. This distillation allows direct compatibility between 3D control and many StyleGAN-based techniques (e.g., inversion and stylization), and also brings an advantage in terms of computational resources. Our codes are available at https://github.com/jgkwak95/SURF-GAN.