论文标题

Unifed:统一开源框架的多合一联合学习平台

UniFed: All-In-One Federated Learning Platform to Unify Open-Source Frameworks

论文作者

Liu, Xiaoyuan, Shi, Tianneng, Xie, Chulin, Li, Qinbin, Hu, Kangping, Kim, Haoyu, Xu, Xiaojun, Vu-Le, The-Anh, Huang, Zhen, Nourian, Arash, Li, Bo, Song, Dawn

论文摘要

联邦学习(FL)已成为一种实用且广泛采用的分布式学习范式。但是,缺乏涵盖各种用例的全面和标准化的解决方案,因此在实践中使用挑战。此外,为特定用例选择合适的FL框架可能是一项艰巨的任务。在这项工作中,我们提出了Unifed,这是标准化现有开源FL框架的第一个统一平台。该平台简化了用于分布式实验和部署的端到端工作流程,其中包括11个流行的开源FL框架。特别是,为了解决工作流程和数据格式的实质性变化,Unifed引入了基于配置的模式强制的任务规范,提供20个可编辑字段。 Unifed还提供功能,例如分布式执行管理,记录和数据分析。 通过Unifed,我们通过进行开发人员的调查和代码级调查来评估并比较了11个流行的FL框架,从功能,隐私保护和性能的角度进行比较。我们为FL框架评估收集15种不同的FL方案设置(例如水平和垂直设置)。这种全面的评估使我们能够分析模型和系统性能,提供详细的比较并为框架选择提供建议。 Unifed简化了为特定用例选择适当的FL框架的过程,同时启用标准化的分布式实验和部署。我们的结果和分析基于多达178个分布式节点的实验提供了宝贵的系统设计和部署见解,旨在使从业人员能够追求有效的FL解决方案。

Federated Learning (FL) has become a practical and widely adopted distributed learning paradigm. However, the lack of a comprehensive and standardized solution covering diverse use cases makes it challenging to use in practice. In addition, selecting an appropriate FL framework for a specific use case can be a daunting task. In this work, we present UniFed, the first unified platform for standardizing existing open-source FL frameworks. The platform streamlines the end-to-end workflow for distributed experimentation and deployment, encompassing 11 popular open-source FL frameworks. In particular, to address the substantial variations in workflows and data formats, UniFed introduces a configuration-based schema-enforced task specification, offering 20 editable fields. UniFed also provides functionalities such as distributed execution management, logging, and data analysis. With UniFed, we evaluate and compare 11 popular FL frameworks from the perspectives of functionality, privacy protection, and performance, through conducting developer surveys and code-level investigation. We collect 15 diverse FL scenario setups (e.g., horizontal and vertical settings) for FL framework evaluation. This comprehensive evaluation allows us to analyze both model and system performance, providing detailed comparisons and offering recommendations for framework selection. UniFed simplifies the process of selecting and utilizing the appropriate FL framework for specific use cases, while enabling standardized distributed experimentation and deployment. Our results and analysis based on experiments with up to 178 distributed nodes provide valuable system design and deployment insights, aiming to empower practitioners in their pursuit of effective FL solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源