论文标题
NERNST HATE HATE定理,用于非平衡跳跃过程
A Nernst heat theorem for nonequilibrium jump processes
论文作者
论文摘要
我们通过一般论点和示例讨论何时以及为什么稳定的非平衡热容量随温度而消失。该框架是有限连接的图表上的马尔可夫跳跃过程之一,其中局部详细平衡的状况允许识别热通量,而离散性更容易地使固定分布在绝对零(如平衡下)具有足够的非平稳分布的非排效性。但是,对于第三定律的非平衡扩展,也需要动态条件:低温动力活性和主导状态的可及性必须保持足够高,以使放松时间在不同初始状态之间不会显着差异。实际上,放松时间不会超过耗散时间。
We discuss via general arguments and examples when and why the steady nonequilibrium heat capacity vanishes with temperature. The framework is the one of Markov jump processes on finite connected graphs where the condition of local detailed balance allows to identify the heat fluxes, and where the discreteness more easily enables sufficient nondegeneracy of the stationary distribution at absolute zero, as under equilibrium. However, for the nonequilibrium extension of the Third Law, a dynamic condition is needed as well: the low-temperature dynamical activity and accessibility of the dominant state must remain sufficiently high so that relaxation times do not start to dramatically differ between different initial states. It suffices in fact that the relaxation times do not exceed the dissipation time.