论文标题
通过统一数据增强和神经体系结构的搜索,用于医学图像分析的自动机器学习
Auto Machine Learning for Medical Image Analysis by Unifying the Search on Data Augmentation and Neural Architecture
论文作者
论文摘要
旨在自动工程增强政策的自动化数据扩展最近引起了不断增长的研究兴趣。许多以前的自动启发方法通过评估测试时间增加性能来评估策略,利用了密度匹配策略。在本文中,我们从理论上和经验上证明了火车和小规模医学图像数据集的验证集之间的不一致,称为内域采样偏差。接下来,我们证明了域中采样偏置可能导致密度匹配的效率低下。为了解决这个问题,提出了一种改进的增强搜索策略,称为增强密度匹配,是通过从先前的培训分布中随机采样策略提出的。此外,提出了有效的自动机器学习(AUTOML)算法,通过统一数据增强和神经体系结构的搜索来提出。实验结果表明,所提出的方法在MedMnist上的最先进方法是一种开创性的基准测试,该基准设计用于医学图像分析中。
Automated data augmentation, which aims at engineering augmentation policy automatically, recently draw a growing research interest. Many previous auto-augmentation methods utilized a Density Matching strategy by evaluating policies in terms of the test-time augmentation performance. In this paper, we theoretically and empirically demonstrated the inconsistency between the train and validation set of small-scale medical image datasets, referred to as in-domain sampling bias. Next, we demonstrated that the in-domain sampling bias might cause the inefficiency of Density Matching. To address the problem, an improved augmentation search strategy, named Augmented Density Matching, was proposed by randomly sampling policies from a prior distribution for training. Moreover, an efficient automatical machine learning(AutoML) algorithm was proposed by unifying the search on data augmentation and neural architecture. Experimental results indicated that the proposed methods outperformed state-of-the-art approaches on MedMNIST, a pioneering benchmark designed for AutoML in medical image analysis.