论文标题
魔术精灵:图像der符合协会学习与变压器
Magic ELF: Image Deraining Meets Association Learning and Transformer
论文作者
论文摘要
卷积神经网络(CNN)和变压器在多媒体应用中取得了巨大成功。但是,很少努力有效,有效地协调这两个架构以满足图像的范围。本文旨在统一这两种架构,以利用其学习优点来降低图像。特别是,CNN的局部连通性和翻译均衡性以及变压器中自我注意力(SA)的全球聚合能力被完全利用用于特定的局部环境和全球结构表示。基于雨水分布揭示降解位置和程度的观察,我们在帮助背景恢复之前引入退化,并因此呈现关联细化方案。提出了一种新型的多输入注意模块(MAM),以将降雨的去除和背景恢复关联。此外,我们为模型配备了有效的深度可分离卷积,以了解特定特征表示并兑换计算复杂性。广泛的实验表明,我们提出的方法(称为ELF)的表现平均超过了最先进的方法(MPRNET)0.25 dB,但仅占其计算成本和参数的11.7 \%和42.1 \%。源代码可从https://github.com/kuijiang94/magic-elf获得。
Convolutional neural network (CNN) and Transformer have achieved great success in multimedia applications. However, little effort has been made to effectively and efficiently harmonize these two architectures to satisfy image deraining. This paper aims to unify these two architectures to take advantage of their learning merits for image deraining. In particular, the local connectivity and translation equivariance of CNN and the global aggregation ability of self-attention (SA) in Transformer are fully exploited for specific local context and global structure representations. Based on the observation that rain distribution reveals the degradation location and degree, we introduce degradation prior to help background recovery and accordingly present the association refinement deraining scheme. A novel multi-input attention module (MAM) is proposed to associate rain perturbation removal and background recovery. Moreover, we equip our model with effective depth-wise separable convolutions to learn the specific feature representations and trade off computational complexity. Extensive experiments show that our proposed method (dubbed as ELF) outperforms the state-of-the-art approach (MPRNet) by 0.25 dB on average, but only accounts for 11.7\% and 42.1\% of its computational cost and parameters. The source code is available at https://github.com/kuijiang94/Magic-ELF.