论文标题
基于冠状密度的太阳风模型的内部边界条件
An inner boundary condition for solar wind models based on coronal density
论文作者
论文摘要
随着社会越来越依赖于容易受到太空天气事件影响的技术,对太阳风的准确预测变得重要性。这项工作描述了基于从冠状动脉观测中获得的冠状等离子体密度的层析成像图的环境太阳风模型的内部边界条件,为磁性外推提供了一种新颖的替代方法。层压密度图提供了4至8RS的HeliePentric距离下的冠状结构的直接限制,从而避免了对复杂的非radial下层电晕进行建模的需求。经验逆关系将密度转换为太阳风速度,这些速度被Heliospheric向上推断(HUXT)模型用作内部边界条件,以使地球上的环境太阳风速速度。动态时间扭曲(DTW)算法用于量化层析成像/HUXT输出和原位数据之间的一致性。然后使用详尽的搜索方法调整下边界速度范围,以优化模型。与耦合的MAS/HUXT模型相比,模型和观察到的太阳风速之间的平均绝对误差的平均绝对误差降低了32%。因此,从断层扫描中获得的密度图作为内部边界约束是冠状磁模型的有效替代方法,并且鉴于常规空间基冠状动脉观测的可用性,在田间提供了显着的进步。
Accurate forecasting of the solar wind has grown in importance as society becomes increasingly dependent on technology that is susceptible to space weather events. This work describes an inner boundary condition for ambient solar wind models based on tomography maps of the coronal plasma density gained from coronagraph observations, providing a novel alternative to magnetic extrapolations. The tomographical density maps provide a direct constraint of the coronal structure at heliocentric distances of 4 to 8Rs, thus avoiding the need to model the complex non-radial lower corona. An empirical inverse relationship converts densities to solar wind velocities which are used as an inner boundary condition by the Heliospheric Upwind Extrapolation (HUXt) model to give ambient solar wind velocity at Earth. The dynamic time warping (DTW) algorithm is used to quantify the agreement between tomography/HUXt output and in situ data. An exhaustive search method is then used to adjust the lower boundary velocity range in order to optimize the model. Early results show up to a 32% decrease in mean absolute error between the modelled and observed solar wind velocities compared to that of the coupled MAS/HUXt model. The use of density maps gained from tomography as an inner boundary constraint is thus a valid alternative to coronal magnetic models, and offers a significant advancement in the field given the availability of routine space-based coronagraph observations.