论文标题
2022年之前莫斯科证券交易所的效率
Efficiency of the Moscow Stock Exchange before 2022
论文作者
论文摘要
本文研究了莫斯科证券交易所的效率程度。如果其资产的价格完全反映了所有可用信息,则将一个市场称为高效。我们表明,从20121年到2021年的大部分月份,我们的市场效率程度显着较低。我们通过(i)滤除财务数据的规律性和(ii)计算过滤后的返回时间序列的香农熵来计算市场效率的程度。我们开发了一种简单的方法,用于估计经验数据中的波动性和价格稳定性,以便从返回时间序列中筛选出这种规律性模式。然后,根据某些熵措施将最终的股票收益率的财务时间序列群集成了不同的组。特别是,我们使用kullback-leibler距离和一个新颖的熵指标,以捕获成对库存之间的共同体。通过使用Monte Carlo模拟,我们就可以确定一组18个股票的市场效率低下的时间段。我们检测到的莫斯科证券交易所的效率低下,这表明有可能制定有利可图的策略(交易成本净额)。股票的有效行为的偏差很大程度上取决于其所属的工业部门。
This paper investigates the degree of efficiency for the Moscow Stock Exchange. A market is called efficient if prices of its assets fully reflect all available information. We show that the degree of market efficiency is significantly low for most of the months from 2012 to 2021. We calculate the degree of market efficiency by (i) filtering out regularities in financial data and (ii) computing the Shannon entropy of the filtered return time series. We have developed a simple method for estimating volatility and price staleness in empirical data, in order to filter out such regularity patterns from return time series. The resulting financial time series of stocks' returns are then clustered into different groups according to some entropy measures. In particular, we use the Kullback-Leibler distance and a novel entropy metric capturing the co-movements between pairs of stocks. By using Monte Carlo simulations, we are then able to identify the time periods of market inefficiency for a group of 18 stocks. The inefficiency of the Moscow Stock Exchange that we have detected is a signal of the possibility of devising profitable strategies, net of transaction costs. The deviation from the efficient behavior for a stock strongly depends on the industrial sector it belongs.