论文标题
实时老年人监视高级安全的人类行动识别
Real-Time Elderly Monitoring for Senior Safety by Lightweight Human Action Recognition
论文作者
论文摘要
随着越来越多的长者独自生活,从远处提供护理就成为了迫切的需求,尤其是为了安全。实时监测和行动识别对于在发生异常行为或异常活动时及时提高警觉至关重要。尽管可穿戴传感器被广泛认为是一种有前途的解决方案,但高度取决于用户的能力和意愿,使其效率低下。相比之下,通过非接触式光学相机收集的视频流提供了更丰富的信息,并释放了老年人的负担。在本文中,利用独立的神经网络(INDRNN),我们提出了一种基于轻量级人类行动识别(HAR)技术的新型实时老年人监测高级安全(REMS)。使用捕获的骨骼图像,REMS方案能够识别异常行为或动作并保留用户的隐私。为了获得高精度,使用多个数据库对HAR模块进行了训练和微调。一项广泛的实验研究验证了REMS系统可以准确,及时执行动作识别。 REMS作为具有隐私的老年安全监控系统符合设计目标,并具有在各种智能监控系统中采用的潜力。
With an increasing number of elders living alone, care-giving from a distance becomes a compelling need, particularly for safety. Real-time monitoring and action recognition are essential to raise an alert timely when abnormal behaviors or unusual activities occur. While wearable sensors are widely recognized as a promising solution, highly depending on user's ability and willingness makes them inefficient. In contrast, video streams collected through non-contact optical cameras provide richer information and release the burden on elders. In this paper, leveraging the Independently-Recurrent neural Network (IndRNN) we propose a novel Real-time Elderly Monitoring for senior Safety (REMS) based on lightweight human action recognition (HAR) technology. Using captured skeleton images, the REMS scheme is able to recognize abnormal behaviors or actions and preserve the user's privacy. To achieve high accuracy, the HAR module is trained and fine-tuned using multiple databases. An extensive experimental study verified that REMS system performs action recognition accurately and timely. REMS meets the design goals as a privacy-preserving elderly safety monitoring system and possesses the potential to be adopted in various smart monitoring systems.