论文标题
在5D Myers-Perry几何形状中使用狄拉克传播器的积分频谱表示,局部狄拉克能量衰减
Local Dirac energy decay in the 5D Myers-Perry geometry using an integral spectral representation for the Dirac propagator
论文作者
论文摘要
我们考虑了5维迈尔斯 - 佩里黑洞的外部区域中的巨大零方程。使用从Dirac方程变量的分离获得的结果ODE,我们使用紧凑的平滑初始数据构建了库奇问题解决方案的积分频谱表示。然后,我们证明,与Kerr-Newman几何形状中的Dirac Operator相比,在任何紧凑的空间衰减区域中存在狄拉克粒子的概率均为$ t \ to \ infty $。
We consider the massive Dirac equation in the exterior region of the 5-dimensional Myers-Perry black hole. Using the resulting ODEs obtained from the separation of variables of the Dirac equation, we construct an integral spectral representation for the solution of the Cauchy problem with compactly supported smooth initial data. We then prove that the probability of presence of a Dirac particle to be in any compact region of space decays to zero as $t\to\infty$, in analogy with the case of the Dirac operator in the Kerr-Newman geometry.