论文标题
可解释的用于基于振动数据的故障检测的可解释AI算法:用例吸附方法和关键评估
Explainable AI Algorithms for Vibration Data-based Fault Detection: Use Case-adadpted Methods and Critical Evaluation
论文作者
论文摘要
使用深神经网络算法分析振动数据是检测早期旋转机械损害的有效方法。但是,这些方法的黑框方法通常无法提供令人满意的解决方案,因为人类无法理解分类的原因。因此,这项工作调查了可解释的AI(XAI)算法在基于振动状态监测的卷积神经网络中的应用。为此,将各种XAI算法应用于基于傅立叶变换以及振动信号的顺序分析的分类。将结果可视化,这是频率-RPM映射和Order-RPM映射的形状每分钟旋转(RPM)的函数。这允许评估取决于旋转速度和恒定频率的特征的显着性。为了比较XAI方法的解释能力,首先使用具有已知类别特异性特征的合成数据集进行了研究。然后,使用了针对电动机上基于振动的不平衡分类的现实世界数据集,该数据集以广泛的旋转速度运行。特别重点放在数据的可变周期性的一致性上,这转化为现实世界机器的旋转速度的不同。这项工作旨在显示此用例的方法的不同优势和劣势:Gradcam,LRP和Lime具有新的扰动策略。
Analyzing vibration data using deep neural network algorithms is an effective way to detect damages in rotating machinery at an early stage. However, the black-box approach of these methods often does not provide a satisfactory solution because the cause of classifications is not comprehensible to humans. Therefore, this work investigates the application of explainable AI (XAI) algorithms to convolutional neural networks for vibration-based condition monitoring. For this, various XAI algorithms are applied to classifications based on the Fourier transform as well as the order analysis of the vibration signal. The results are visualized as a function of the revolutions per minute (RPM), in the shape of frequency-RPM maps and order-RPM maps. This allows to assess the saliency given to features which depend on the rotation speed and those with constant frequency. To compare the explanatory power of the XAI methods, investigations are first carried out with a synthetic data set with known class-specific characteristics. Then a real-world data set for vibration-based imbalance classification on an electric motor, which runs at a broad range of rotation speeds, is used. A special focus is put on the consistency for variable periodicity of the data, which translates to a varying rotation speed of a real-world machine. This work aims to show the different strengths and weaknesses of the methods for this use case: GradCAM, LRP and LIME with a new perturbation strategy.