论文标题
触觉健身房2.0:SIM到现实的深度加固学习,用于比较低成本的高分辨率机器人触摸
Tactile Gym 2.0: Sim-to-real Deep Reinforcement Learning for Comparing Low-cost High-Resolution Robot Touch
论文作者
论文摘要
高分辨率的光触觉传感器越来越多地用于机器人学习环境中,因为它们能够捕获与代理环境相互作用直接相关的大量数据。但是,由于触觉机器人平台的高成本,专业的仿真软件以及在不同传感器之间缺乏通用性的模拟方法,因此在该领域存在很大的研究障碍。在这封信中,我们将触觉健身房的模拟器扩展到两种最受欢迎的类型类型的三个新的光学触觉传感器(Tactip,Digit和Digitac),分别是Gelsight Style(基于图像遮蔽)和Tactip Style(基于标记)。我们证明,尽管真实触觉图像之间存在显着差异,但可以与这三个不同的传感器一起使用单个SIM到实现的方法,以实现强大的现实性能。此外,我们通过将其调整到廉价的4道机器人臂中来降低对拟议任务的进入障碍,从而进一步使该基准的传播。我们在三个需要触摸感的身体相互交互的任务上验证了扩展环境:对象推动,边缘跟随和表面跟随。我们实验验证的结果突出了这些传感器之间的一些差异,这可能有助于未来的研究人员选择并自定义触觉传感器的物理特征,以进行不同的操作场景。
High-resolution optical tactile sensors are increasingly used in robotic learning environments due to their ability to capture large amounts of data directly relating to agent-environment interaction. However, there is a high barrier of entry to research in this area due to the high cost of tactile robot platforms, specialised simulation software, and sim-to-real methods that lack generality across different sensors. In this letter we extend the Tactile Gym simulator to include three new optical tactile sensors (TacTip, DIGIT and DigiTac) of the two most popular types, Gelsight-style (image-shading based) and TacTip-style (marker based). We demonstrate that a single sim-to-real approach can be used with these three different sensors to achieve strong real-world performance despite the significant differences between real tactile images. Additionally, we lower the barrier of entry to the proposed tasks by adapting them to an inexpensive 4-DoF robot arm, further enabling the dissemination of this benchmark. We validate the extended environment on three physically-interactive tasks requiring a sense of touch: object pushing, edge following and surface following. The results of our experimental validation highlight some differences between these sensors, which may help future researchers select and customize the physical characteristics of tactile sensors for different manipulations scenarios.