论文标题
一类准线性椭圆问题的多样性和分叉结果在梯度上具有二次生长
Multiplicity and Bifurcation Results for a Class of Quasilinear Elliptic Problems with Quadratic Growth on the Gradient
论文作者
论文摘要
我们研究了对以下类椭圆方程的解决方案的存在,不存在和多样性 \ begin {align*} \ tag {$p_λ$} - \ Mathrm {div}(a(x)du)=c_λ(x)u+(m(x)du,du)+h(x),\ qquad u \ in H_0^1(ω)\ cap l^\ infty(ω), \ end {align*} 其中$ω\ subset \ mathbb {r}^n $,$ n \ geq 3 $,是一个有界限的域,具有低调边界 $ \partialΩ$。 对于某些$ p> n $的系数$ c,h \ in l^p(ω)$,带有$ c^\ pm \ geq 0 $和$c_λ(x):=λc^+(x) - c^ - (x) - (x)$用于真实参数$λ$。矩阵$ a(x)$是均匀的确定且有界的,而$ m(x)$是正定的和有界的。 在合适的假设下,我们表征了$(p_λ)$的解决方案连续性,包括其分叉点。我们在强制案例($λ\ leq 0 $)中建立了存在和独特性结果,并在非重新情况下证明了多重性结果($λ> 0 $)。 \ bigskip \ textbf {关键字}:quasilinarear椭圆方程,渐变上的二次增长, 子和超级解决方案。
We investigate the existence, non-existence, and multiplicity of solutions to the following class of quasilinear elliptic equations \begin{align*}\tag{$P_λ$} -\mathrm{div}(A(x)Du)=c_λ(x)u+( M(x)Du,Du)+h(x),\qquad u\in H_0^1(Ω)\cap L^\infty(Ω), \end{align*} where $Ω\subset\mathbb{R}^n$, $n\geq 3$, is a bounded domain with a low-regularity boundary $\partialΩ$. The coefficients $c, h \in L^p(Ω)$ for some $p > n$, with $c^\pm \geq 0$ and $c_λ(x) := λc^+(x) - c^-(x)$ for a real parameter $λ$. The matrix $A(x)$ is uniformly positive definite and bounded, while $M(x)$ is positive definite and bounded. Under suitable assumptions, we characterize the solution continuum of $(P_λ)$, including its bifurcation points. We establish existence and uniqueness results in the coercive case ($λ\leq 0$) and prove multiplicity results in the non-coercive case ($λ> 0$). \bigskip \textbf{Keywords}: Quasilinear elliptic equations, quadratic growth on the gradient, sub and super solutions.