论文标题

原型引导的持续适应,用于班级无监督的域适应

Prototype-Guided Continual Adaptation for Class-Incremental Unsupervised Domain Adaptation

论文作者

Lin, Hongbin, Zhang, Yifan, Qiu, Zhen, Niu, Shuaicheng, Gan, Chuang, Liu, Yanxia, Tan, Mingkui

论文摘要

本文研究了一个新的,实用但具有挑战性的问题,称为类无监督的域适应性(CI-UDA),其中标记的源域包含所有类别,但是未标记的目标域中的类依次增加。由于两个困难,这个问题具有挑战性。首先,源和目标标签集在每个时间步骤都不一致,这使得很难进行准确的域对齐。其次,以前的目标类在当前步骤中不可用,从而导致忘记了先前的知识。为了解决这个问题,我们提出了一种新型的原型引导的持续适应(PROCA)方法,由两种解决方案策略组成。 1)标签原型识别:我们通过检测具有目标样本的累积预测概率的共享类来识别目标标签原型。 2)基于原型的对齐和重播:基于确定的标签原型,我们对齐域并强制执行模型以保留先前的知识。有了这两种策略,ProCA能够有效地将源模型改编为类未标记的目标域。广泛的实验证明了Proca在解决CI-UDA方面的有效性和优势。源代码可从https://github.com/hongbin98/proca.git获得

This paper studies a new, practical but challenging problem, called Class-Incremental Unsupervised Domain Adaptation (CI-UDA), where the labeled source domain contains all classes, but the classes in the unlabeled target domain increase sequentially. This problem is challenging due to two difficulties. First, source and target label sets are inconsistent at each time step, which makes it difficult to conduct accurate domain alignment. Second, previous target classes are unavailable in the current step, resulting in the forgetting of previous knowledge. To address this problem, we propose a novel Prototype-guided Continual Adaptation (ProCA) method, consisting of two solution strategies. 1) Label prototype identification: we identify target label prototypes by detecting shared classes with cumulative prediction probabilities of target samples. 2) Prototype-based alignment and replay: based on the identified label prototypes, we align both domains and enforce the model to retain previous knowledge. With these two strategies, ProCA is able to adapt the source model to a class-incremental unlabeled target domain effectively. Extensive experiments demonstrate the effectiveness and superiority of ProCA in resolving CI-UDA. The source code is available at https://github.com/Hongbin98/ProCA.git

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源