论文标题

域自适应语义细分的双向对比度学习

Bi-directional Contrastive Learning for Domain Adaptive Semantic Segmentation

论文作者

Lee, Geon, Eom, Chanho, Lee, Wonkyung, Park, Hyekang, Ham, Bumsub

论文摘要

我们提出了一种用于语义分割的新型无监督域适应方法,该方法将训练的模型概括为源图像和相应的地面真相标签到目标域。域自适应语义分割的关键是学习域,不变和歧视性特征,而没有目标地面真相标签。为此,我们提出了一个双向像素 - 型对比度学习框架,该框架可最大程度地减少同一对象类特征的类内部变化,同时无论域,无论域如何,都可以最大程度地提高不同阶层的阶层变化。具体来说,我们的框架将像素级特征和目标图像中同一对象类的原型保持一致(即分别为正面对),将它们与不同类别(即负面对)的分开,并在源图像和目标图像中使用Pixel级特征的其他方向进行对齐和分离过程。跨域匹配鼓励域不变特征表示,而双向像素 - 型对应对应关系汇总了同一对象类的特征,提供了歧视性特征。为了建立对比度学习的训练对,我们建议使用非参数标签转移(即跨不同域中的像素 - 预型对应关系)生成目标图像的动态伪标签。我们还提出了一种校准方法,以补偿培训期间逐渐补偿原型的阶级域偏差。

We present a novel unsupervised domain adaptation method for semantic segmentation that generalizes a model trained with source images and corresponding ground-truth labels to a target domain. A key to domain adaptive semantic segmentation is to learn domain-invariant and discriminative features without target ground-truth labels. To this end, we propose a bi-directional pixel-prototype contrastive learning framework that minimizes intra-class variations of features for the same object class, while maximizing inter-class variations for different ones, regardless of domains. Specifically, our framework aligns pixel-level features and a prototype of the same object class in target and source images (i.e., positive pairs), respectively, sets them apart for different classes (i.e., negative pairs), and performs the alignment and separation processes toward the other direction with pixel-level features in the source image and a prototype in the target image. The cross-domain matching encourages domain-invariant feature representations, while the bidirectional pixel-prototype correspondences aggregate features for the same object class, providing discriminative features. To establish training pairs for contrastive learning, we propose to generate dynamic pseudo labels of target images using a non-parametric label transfer, that is, pixel-prototype correspondences across different domains. We also present a calibration method compensating class-wise domain biases of prototypes gradually during training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源