论文标题
基于生理学的视网膜脉管系统模拟可实现OCT血管造影的无注释分割
Physiology-based simulation of the retinal vasculature enables annotation-free segmentation of OCT angiographs
论文作者
论文摘要
光学相干断层扫描(OCTA)可以非侵入地对眼睛的循环系统进行图像。为了可靠地表征视网膜脉管系统,有必要自动从这些图像中提取定量指标。这种生物标志物的计算需要对血管进行精确的语义分割。但是,基于深度学习的分割方法主要依赖于具有体素级注释的监督培训,这是昂贵的。在这项工作中,我们提出了一条管道,以合成具有本质上匹配的地面真实标签的大量逼真的八颗图像。从而消除了需要手动注释培训数据的需求。我们提出的方法基于两个新的组成部分:1)基于生理的模拟,该模拟对各种视网膜血管丛进行建模和2)基于物理的图像增强套件,这些图像增强模拟,模仿包括典型文物的八章图像采集过程。在广泛的基准测试实验中,我们通过成功训练视网膜血管分割算法来证明合成数据的实用性。在我们方法的竞争性定量和优越的定性性能的鼓励下,我们认为它构成了一种多功能工具,可以推进对八章图像的定量分析。
Optical coherence tomography angiography (OCTA) can non-invasively image the eye's circulatory system. In order to reliably characterize the retinal vasculature, there is a need to automatically extract quantitative metrics from these images. The calculation of such biomarkers requires a precise semantic segmentation of the blood vessels. However, deep-learning-based methods for segmentation mostly rely on supervised training with voxel-level annotations, which are costly to obtain. In this work, we present a pipeline to synthesize large amounts of realistic OCTA images with intrinsically matching ground truth labels; thereby obviating the need for manual annotation of training data. Our proposed method is based on two novel components: 1) a physiology-based simulation that models the various retinal vascular plexuses and 2) a suite of physics-based image augmentations that emulate the OCTA image acquisition process including typical artifacts. In extensive benchmarking experiments, we demonstrate the utility of our synthetic data by successfully training retinal vessel segmentation algorithms. Encouraged by our method's competitive quantitative and superior qualitative performance, we believe that it constitutes a versatile tool to advance the quantitative analysis of OCTA images.