论文标题
Tseng的算法,并具有过去的推断,并具有可变的指标和错误术语
Tseng's Algorithm with Extrapolation from the Past Endowed with Variable Metrics and Error Terms
论文作者
论文摘要
在本文中,我们提出了Tseng的算法(前向前算法:FBF)的可变度量版本,并结合了过去的外推,其中包括在希尔伯特(Hilbert)空间中找到最大单调操作员和单调单调运算符和单调lipschitzian lipschitzian lipschitzian lipschitzian lipschitzian space的错误条款。这可以看作是带有可变指标和误差项的乐观梯度下降(OGDA)算法。还提出了针对涉及线性算子组成的单调包容性问题的原始二算法。图像脱毛中发生的原始偶尔问题证明了我们的理论结果的应用。
In this paper, we propose a variable metric version of Tseng's algorithm (the forward-backward-forward algorithm: FBF) combined with extrapolation from the past that includes error terms for finding a zero of the sum of a maximally monotone operator and a monotone Lipschitzian operator in Hilbert spaces. This can be seen as the optimistic gradient descent ascent (OGDA) algorithm endowed with variable metrics and error terms. Primal-dual algorithms are also proposed for monotone inclusion problems involving compositions with linear operators. The primal-dual problem occurring in image deblurring demonstrates an application of our theoretical results.