论文标题
电报捕食者 - 捕集系统的数值收敛
Numerical convergence of a Telegraph Predator-Prey System
论文作者
论文摘要
研究了电报捕食者 - 弹药系统的数值收敛性。这种部分微分方程(PDE)系统可以描述具有反应性,扩散和延迟影响的各种生物系统。最初,我们的问题是数学建模的。然后,使用有限的差异方法将PDES系统离散化,以在空间中的时间和隐式形式以显式形式获得方程式。验证了电报捕食者系统离散化的一致性。接下来,计算了具有反应性术语和具有延迟的电报系统的捕食者弹药系统的von Neumann稳定性条件。对于我们的电报捕食者系统,通过数值实验,它被验证为网格细化和模型参数(反应性常数,扩散系数和延迟项)确定模型的稳定性/不稳定性条件。 关键字:电报 - 避免反应性系统。 Maxwell-Cattaneo延迟。离散的一致性。冯·诺伊曼稳定性。数值实验。
The numerical convergence of a Telegraph Predator-Prey system is studied. This system of partial differential equations (PDEs) can describe various biological systems with reactive, diffusive and delay effects. Initially, our problem is mathematically modeled. Then, the PDEs system is discretized using the Finite Difference method, obtaining a system of equations in the explicit form in time and implicit form in space. The consistency of the Telegraph Predator-Prey system discretization was verified. Next, the von Neumann stability conditions were calculated for a Predator-Prey system with reactive terms and for a Telegraph system with delay. For our Telegraph Predator-Prey system, through numerical experiments, it was verified tat the mesh refinement and the model parameters (reactive constants, diffusion coefficient and delay term) determine the stability/instability conditions of the model. Keywords: Telegraph-Diffusive-Reactive System. Maxwell-Cattaneo Delay. Discretization Consistency. Von Neumann Stability. Numerical Experimentation.