论文标题

目标识别和贝叶斯模型平均具有概率层次因子概率

Target Identification and Bayesian Model Averaging with Probabilistic Hierarchical Factor Probabilities

论文作者

Basener, William

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Target detection in hyperspectral imagery is the process of locating pixels from an image which are likely to contain target, typically done by comparing one or more spectra for the desired target material to each pixel in the image. Target identification is the process of target detection incorporating an additional process to identify more specifically the material that is present in each pixel that scored high in detection. Detection is generally a 2-class problem of target vs. background, and identification is a many class problem including target, background, and additional know materials. The identification process we present is probabilistic and hierarchical which provides transparency to the process and produces trustworthy output. In this paper we show that target identification has a much lower false alarm rate than detection alone, and provide a detailed explanation of a robust identification method using probabilistic hierarchical classification that handles the vague categories of materials that depend on users which are different than the specific physical categories of chemical constituents. Identification is often done by comparing mixtures of materials including the target spectra to mixtures of materials that do not include the target spectra, possibly with other steps. (band combinations, feature checking, background removal, etc.) Standard linear regression does not handle these problems well because the number of regressors (identification spectra) is greater than the number of feature variables (bands), and there are multiple correlated spectra. Our proposed method handles these challenges efficiently and provides additional important practical information in the form of hierarchical probabilities computed from Bayesian model averaging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源