论文标题

具有参数和非参数噪声模型的双变量数据的光纤不确定性可视化

Fiber Uncertainty Visualization for Bivariate Data With Parametric and Nonparametric Noise Models

论文作者

Athawale, Tushar M., Johnson, Chris R., Sane, Sudhanshu, Pugmire, David

论文摘要

多元数据及其不确定性的可视化和分析是数据可视化中的主要研究挑战。构造纤维表面是多元数据可视化的流行技术,它将单变量数据的级别可视化概念推广到多元数据。在本文中,我们提出了一个统计框架,以量化从不确定的双变量场中提取的纤维的位置概率。具体而言,我们将双变量数据的不确定性的最新高斯模型扩展到其他参数分布(例如统一和epanechnikov),以及更一般的非参数概率分布(例如直方图和核密度估计),并得出了纤维的相应空间概率。在我们提出的框架中,当假定双变量数据具有独立的参数和非参数噪声时,我们利用Green定理进行封闭形式的纤维概率计算。此外,我们提出了一种非参数方法与数值整合相结合,以研究纤维的位置概率时,假定双变量数据具有相关的噪声。为了进行不确定性分析,我们通过概率阈值通过音量渲染和提取水平集来可视化纤维的概率量。我们通过对合成和仿真数据集的实验介绍了我们提出的技术的实用性。

Visualization and analysis of multivariate data and their uncertainty are top research challenges in data visualization. Constructing fiber surfaces is a popular technique for multivariate data visualization that generalizes the idea of level-set visualization for univariate data to multivariate data. In this paper, we present a statistical framework to quantify positional probabilities of fibers extracted from uncertain bivariate fields. Specifically, we extend the state-of-the-art Gaussian models of uncertainty for bivariate data to other parametric distributions (e.g., uniform and Epanechnikov) and more general nonparametric probability distributions (e.g., histograms and kernel density estimation) and derive corresponding spatial probabilities of fibers. In our proposed framework, we leverage Green's theorem for closed-form computation of fiber probabilities when bivariate data are assumed to have independent parametric and nonparametric noise. Additionally, we present a nonparametric approach combined with numerical integration to study the positional probability of fibers when bivariate data are assumed to have correlated noise. For uncertainty analysis, we visualize the derived probability volumes for fibers via volume rendering and extracting level sets based on probability thresholds. We present the utility of our proposed techniques via experiments on synthetic and simulation datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源